中国水稻科学 ›› 2017, Vol. 31 ›› Issue (1): 13-22.DOI: 10.16819/j.1001.7216.2017.6101
黄小平1, 张宏玉2, 雷刚1, 王志美1, 章智1, 贺超1, 廖江林1,2,*(), 黄英金1,2,*()
收稿日期:
2016-06-24
修回日期:
2016-09-17
出版日期:
2017-01-20
发布日期:
2017-01-10
通讯作者:
廖江林,黄英金
基金资助:
Xiaoping HUANG1, Hongyu ZHANG2, Gang LEI1, Zhimei WANG1, Zhi ZHANG1, Chao HE1, Jianglin LIAO1,2,*(), Yingjin HUANG1,2,*()
Received:
2016-06-24
Revised:
2016-09-17
Online:
2017-01-20
Published:
2017-01-10
Contact:
Jianglin LIAO, Yingjin HUANG
摘要:
目的 为了阐明水稻灌浆期耐夜间高温的分子机制,提高水稻耐热性,鉴定了水稻近等基因系耐热纯系XN0437T与热敏感纯系XN0437S在灌浆期夜间高温胁迫下的差异表达蛋白质。方法 采用桶栽方法培育水稻,于开花期标记同一天扬花的颖花以保障所取颖花样品的生育进程一致;于水稻灌浆初期(花后第8天)进行夜间高温处理。高温处理结束后剪取带标记的颖花提取水稻籽粒总蛋白质,采用8-plex iTRAQ试剂盒进行蛋白质样品的差异显色标记,标记样品采用高效液相系统进行质谱鉴定及定量分析。结果 鉴定并定量了3130个蛋白质,耐热与热敏感水稻纯系间存在36个差异表达蛋白质。蛋白质功能注释结果显示,鉴定的36个差异表达蛋白质中仅14个蛋白质(占38.9%)注释了功能,12个蛋白质(占33.3%)为推测性功能注释, 10个(占27.8%)为功能未知的蛋白质。已注释功能的14个蛋白质中,5个蛋白质参与能量代谢,3个蛋白质参与物质转运与代谢,2个蛋白质参与光合作用,3个蛋白质为响应逆境的锌指蛋白质,1个蛋白质为响应逆境的热激蛋白质。结论 灌浆期夜间高温影响水稻籽粒细胞内参与能量代谢、物质转运与代谢、光合作用等相关蛋白质的表达模式。水稻籽粒细胞中锌指蛋白质Q67TK9、Q10N88上调表达,锌指蛋白质Q5YLY5下调表达,有利于提高水稻灌浆期对夜间高温的耐热性。
黄小平, 张宏玉, 雷刚, 王志美, 章智, 贺超, 廖江林, 黄英金. 灌浆期夜间高温胁迫下耐热和热敏感水稻籽粒的比较蛋白质组分析[J]. 中国水稻科学, 2017, 31(1): 13-22.
Xiaoping HUANG, Hongyu ZHANG, Gang LEI, Zhimei WANG, Zhi ZHANG, Chao HE, Jianglin LIAO, Yingjin HUANG. Analysis on Comparative Proteomics of Rice Grain Between Heat-tolerant and Heat-sensitive Lines Under High Night Temperature Stress at Filling Stage[J]. Chinese Journal OF Rice Science, 2017, 31(1): 13-22.
蛋白质ID Protein ID | 基因ID Gene ID | HT | HS | HT/HS | 蛋白质的功能描述 Functional illustration of protein |
---|---|---|---|---|---|
能量代谢 Energy metabolism | |||||
Q9FU69 | LOC_Os01g08090 | -1.613 | -2.899 | 1.800 | 糖基转移酶 Glycosyltransferase |
Q7Y179 | LOC_Os03g46660 | 1.794 | 1.000 | 1.793 | 葡聚糖-1,3-β-葡萄糖苷内切酶7 Glucan endo-1,3-beta-glucosidase 7 |
Q0IPF8 | LOC_Os12g10570 | -1.495 | 1.012 | -1.513 | ATP合成酶亚基β ATP synthase subunit beta |
Q2R1N0 | LOC_Os11g38650 | -1.739 | -1.085 | -1.605 | 糖基转移酶 Glycosyltransferase |
Q84T00 | LOC_Os03g58800 | -1.805 | 1.044 | -1.887 | ATP酶家族蛋白质 ATPase, AAA family protein |
物质转运与代谢 Matter translocation and metabolism | |||||
Q8GTK2 | LOC_Os07g46350 | 1.832 | 1.097 | 1.669 | 羧肽酶 Carboxypeptidase |
Q7Y007 | LOC_Os03g47940 | 2.076 | 1.330 | 1.561 | 类似GDSL脂肪酶或酰基水解酶家族蛋白质 GDSL-like Lipase/Acylhydrolase family protein |
Q10BU2 | LOC_Os03g58980 | -1.672 | 1.267 | -2.119 | 类似(种子)萌发蛋白质3-7 Germin-like protein 3-7 |
光合作用 Photosynthesis | |||||
Q2R237 | LOC_Os11g37130 | 3.115 | 1.199 | 2.598 | 叶绿体独立转位酶蛋白质 TATB Sec-independent protein translocase protein TATB, chloroplastic |
Q658I1 | LOC_Os06g03790 | -1.667 | 1.674 | -2.793 | 核糖体蛋白质L29 Ribosomal protein L29 |
逆境应答 Stress response | |||||
Q67TK9 | B1012G11.2 | 2.852 | -1.041 | 2.967 | 锌指蛋白质 Zinc knuckle containing protein-like |
Q10N88 | LOC_Os03g17020 | 2.341 | 1.326 | 1.765 | ZIGA2锌指蛋白质 ARFGAP-like zinc finger-containing protein ZIGA2 |
Q84Q72 | LOC_Os03g16030 | 1.906 | 2.975 | -1.560 | 18.1 kD热激蛋白质类型Ⅰ 18.1 kD class Ⅰ heat shock protein |
Q5YLY5 | LOC_Os06g50840 | -4.167 | -1.560 | -2.667 | 锌指蛋白质 Zinc finger protein-like |
推测性功能注释蛋白质 Preliminary annotation of unknown-function protein | |||||
Q6ZJ47 | LOC_Os08g02550 | 3.150 | -1.522 | 4.796 | 可能的COP9复合亚基3 Putative COP9 complex subunit 3, FUS11 |
Q6ZCC9 | LOC_Os08g02030 | 1.842 | -1.764 | 3.251 | 可能的AER蛋白质 Putative AER |
Q6ZCP8 | LOC_Os08g07060 | 2.046 | -1.477 | 3.020 | 可能的泛素氧化还原酶亚基1 Putative ubiquinone oxidoreductase subunit 1 |
Q6I587 | LOC_Os05g5081 | 2.045 | 1.057 | 1.934 | 可能的钙依赖蛋白质激酶 Putative calcium-dependent protein kinase |
Q53M16 | LOC_Os11g13690 | 1.109 | -1.560 | 1.730 | 假定蛋白质 Hypothetical protein |
Q9LWS6 | LOC_Os06g02470 | 1.699 | -1.003 | 1.704 | 臭氧胁迫响应相关蛋白质 Ozone-responsive stress-related protein-like |
Q7XI37 | LOC_Os07g42890 | 1.918 | 1.150 | 1.668 | 可能的FH互作蛋白质FIP1 Putative FH protein interacting protein FIP1 |
Q69MT6 | LOC_Os09g34140 | 1.908 | 1.158 | 1.649 | 假定蛋白质 Hypothetical protein OSJNBb0034B12.21 |
Q338P8 | LOC_Os10g25010 | 1.570 | 1.013 | 1.550 | 可能的钙离子结合蛋白质 Probable calcium-binding protein CML8 |
Q8H8U1 | LOC_Os03g17510 | 1.038 | 1.574 | -1.517 | 可能的PPR重复蛋白质 Putative PPR repeat containing protein |
Q7XI22 | LOC_Os07g08880 | 1.215 | 1.877 | -1.546 | 可能的ES43蛋白质 Putative ES43 protein |
Q94GQ6 | LOC_Os03g53620 | 1.129 | 1.959 | -1.736 | 可能的脱落酸诱导蛋白质 Putative abscisic acid-inducible protein |
功能未知蛋白质 Unknown-function protein | |||||
C7JA46 | LOC_Os12g44380 | 1.792 | -1.144 | 2.051 | |
Q7XQ85 | LOC_Os04g48850 | -1.015 | -1.894 | 1.864 | |
Q0E0B4 | LOC_Os02g35630 | 1.075 | -1.548 | 1.664 | |
Q7XVN6 | LOC_Os04g32070 | 1.511 | -1.055 | 1.594 | |
Q0E3F2 | LOC_Os02g08130 | 2.037 | 1.282 | 1.589 | |
Q6YUH8 | LOC_Os02g46956 | 1.174 | 1.848 | -1.572 | |
Q0DTK3 | LOC_Os03g13850 | -1.575 | 1.043 | -1.642 | |
Q6ES31 | LOC_Os09g24710 | 1.018 | 1.757 | -1.727 | |
Q5N9C8 | LOC_Os01g51220 | -1.116 | 1.771 | -1.976 | |
Q0E225 | LOC_Os02g17760 | -2.793 | -1.285 | -2.179 |
表1 耐热纯系与热敏感纯系的差异表达蛋白质的表达模式及其功能注释
Table 1 Expression model and functional illustration of the differentially expressed proteins between the heat-tolerant and the heat-sensitive lines.
蛋白质ID Protein ID | 基因ID Gene ID | HT | HS | HT/HS | 蛋白质的功能描述 Functional illustration of protein |
---|---|---|---|---|---|
能量代谢 Energy metabolism | |||||
Q9FU69 | LOC_Os01g08090 | -1.613 | -2.899 | 1.800 | 糖基转移酶 Glycosyltransferase |
Q7Y179 | LOC_Os03g46660 | 1.794 | 1.000 | 1.793 | 葡聚糖-1,3-β-葡萄糖苷内切酶7 Glucan endo-1,3-beta-glucosidase 7 |
Q0IPF8 | LOC_Os12g10570 | -1.495 | 1.012 | -1.513 | ATP合成酶亚基β ATP synthase subunit beta |
Q2R1N0 | LOC_Os11g38650 | -1.739 | -1.085 | -1.605 | 糖基转移酶 Glycosyltransferase |
Q84T00 | LOC_Os03g58800 | -1.805 | 1.044 | -1.887 | ATP酶家族蛋白质 ATPase, AAA family protein |
物质转运与代谢 Matter translocation and metabolism | |||||
Q8GTK2 | LOC_Os07g46350 | 1.832 | 1.097 | 1.669 | 羧肽酶 Carboxypeptidase |
Q7Y007 | LOC_Os03g47940 | 2.076 | 1.330 | 1.561 | 类似GDSL脂肪酶或酰基水解酶家族蛋白质 GDSL-like Lipase/Acylhydrolase family protein |
Q10BU2 | LOC_Os03g58980 | -1.672 | 1.267 | -2.119 | 类似(种子)萌发蛋白质3-7 Germin-like protein 3-7 |
光合作用 Photosynthesis | |||||
Q2R237 | LOC_Os11g37130 | 3.115 | 1.199 | 2.598 | 叶绿体独立转位酶蛋白质 TATB Sec-independent protein translocase protein TATB, chloroplastic |
Q658I1 | LOC_Os06g03790 | -1.667 | 1.674 | -2.793 | 核糖体蛋白质L29 Ribosomal protein L29 |
逆境应答 Stress response | |||||
Q67TK9 | B1012G11.2 | 2.852 | -1.041 | 2.967 | 锌指蛋白质 Zinc knuckle containing protein-like |
Q10N88 | LOC_Os03g17020 | 2.341 | 1.326 | 1.765 | ZIGA2锌指蛋白质 ARFGAP-like zinc finger-containing protein ZIGA2 |
Q84Q72 | LOC_Os03g16030 | 1.906 | 2.975 | -1.560 | 18.1 kD热激蛋白质类型Ⅰ 18.1 kD class Ⅰ heat shock protein |
Q5YLY5 | LOC_Os06g50840 | -4.167 | -1.560 | -2.667 | 锌指蛋白质 Zinc finger protein-like |
推测性功能注释蛋白质 Preliminary annotation of unknown-function protein | |||||
Q6ZJ47 | LOC_Os08g02550 | 3.150 | -1.522 | 4.796 | 可能的COP9复合亚基3 Putative COP9 complex subunit 3, FUS11 |
Q6ZCC9 | LOC_Os08g02030 | 1.842 | -1.764 | 3.251 | 可能的AER蛋白质 Putative AER |
Q6ZCP8 | LOC_Os08g07060 | 2.046 | -1.477 | 3.020 | 可能的泛素氧化还原酶亚基1 Putative ubiquinone oxidoreductase subunit 1 |
Q6I587 | LOC_Os05g5081 | 2.045 | 1.057 | 1.934 | 可能的钙依赖蛋白质激酶 Putative calcium-dependent protein kinase |
Q53M16 | LOC_Os11g13690 | 1.109 | -1.560 | 1.730 | 假定蛋白质 Hypothetical protein |
Q9LWS6 | LOC_Os06g02470 | 1.699 | -1.003 | 1.704 | 臭氧胁迫响应相关蛋白质 Ozone-responsive stress-related protein-like |
Q7XI37 | LOC_Os07g42890 | 1.918 | 1.150 | 1.668 | 可能的FH互作蛋白质FIP1 Putative FH protein interacting protein FIP1 |
Q69MT6 | LOC_Os09g34140 | 1.908 | 1.158 | 1.649 | 假定蛋白质 Hypothetical protein OSJNBb0034B12.21 |
Q338P8 | LOC_Os10g25010 | 1.570 | 1.013 | 1.550 | 可能的钙离子结合蛋白质 Probable calcium-binding protein CML8 |
Q8H8U1 | LOC_Os03g17510 | 1.038 | 1.574 | -1.517 | 可能的PPR重复蛋白质 Putative PPR repeat containing protein |
Q7XI22 | LOC_Os07g08880 | 1.215 | 1.877 | -1.546 | 可能的ES43蛋白质 Putative ES43 protein |
Q94GQ6 | LOC_Os03g53620 | 1.129 | 1.959 | -1.736 | 可能的脱落酸诱导蛋白质 Putative abscisic acid-inducible protein |
功能未知蛋白质 Unknown-function protein | |||||
C7JA46 | LOC_Os12g44380 | 1.792 | -1.144 | 2.051 | |
Q7XQ85 | LOC_Os04g48850 | -1.015 | -1.894 | 1.864 | |
Q0E0B4 | LOC_Os02g35630 | 1.075 | -1.548 | 1.664 | |
Q7XVN6 | LOC_Os04g32070 | 1.511 | -1.055 | 1.594 | |
Q0E3F2 | LOC_Os02g08130 | 2.037 | 1.282 | 1.589 | |
Q6YUH8 | LOC_Os02g46956 | 1.174 | 1.848 | -1.572 | |
Q0DTK3 | LOC_Os03g13850 | -1.575 | 1.043 | -1.642 | |
Q6ES31 | LOC_Os09g24710 | 1.018 | 1.757 | -1.727 | |
Q5N9C8 | LOC_Os01g51220 | -1.116 | 1.771 | -1.976 | |
Q0E225 | LOC_Os02g17760 | -2.793 | -1.285 | -2.179 |
[1] | Wheeler T, von Braun J. Climate change impacts on global food security.Science, 2013, 341(6145): 508-513. |
[2] | Ray D K, Gerber J S, Macdonald G K, West P C.Climate variation explains a third of global crop yield variability.Nat Commun, 2015, 6: 5989. |
[3] | Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman K G.Rice yields decline with higher night temperature from global warming.Proc Natl Acad Sci USA, 2004, 101(27): 9971-9975. |
[4] | Shi W J, Yin X Y, Struik P C, Xie F M, Schmidt R C, Jagadish K S V. Grain yield and quality responses of tropical hybrid rice to high night-time temperature.Field Crop Res, 2016, 190: 18-25. |
[5] | 谢晓金, 李秉柏, 王琳, 戴秦如, 申双和. 长江中下游地区高温时空分布及水稻花期的避害对策. 中国农业气象, 2010, 31(1): 144-150. |
Xie X J, Li B B, Wang L, Dai Q R, Shen S H.Spatial and temporal distribution of high temperature and strategies to rice florescence harm in the lower-middle reaches of Yangtze River.Chi J Agrometeorol, 2010, 31(1): 144-150.(in Chinese with English abstract) | |
[6] | 张校玮. 我国极端气候时空特征及风险分析. 上海:上海师范大学, 2012. |
Zhang J W.Spatial and temporal characteristics of extreme climate and risks analysis in China. Shanghai:Shanghai Normal University, 2012.(in Chinese with English abstract) | |
[7] | Morita S, Yonemaru J, Takanashi J.Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot, 2005, 95(4): 695-701. |
[8] | Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H S.Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). J Agric Food Chem, 2010, 58(19): 10545-10552. |
[9] | Ahmed N, Tetlow I J, Nawaz S, Iqbal A, Mubin M, Nawaz U R M S, Butt A, Lightfoot D A, Maekawa M. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.J Sci Food Agric, 2015, 95(11): 2237-2243. |
[10] | Jagadish S V K, Murty M V R, Quick W P. Rice responses to rising temperatures-challenges, perspectives and future directions.Plant, Cell Environ, 2015, 38: 1686-1698. |
[11] | Liu J, Feng L, Li J, He Z.Genetic and epigenetic control of plant heat responses.Front Plant Sci, 2015, 6: 267. |
[12] | Jiang H, Dian W, Wu P.Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme.Phytochemistry, 2003, 63(1): 53-59. |
[13] | 张桂莲, 廖斌, 武小金, 肖应辉, 肖浪涛, 陈立云. 高温对水稻胚乳淀粉合成关键酶活性及内源激素含量的影响. 植物生理学报, 2014, 50(12): 1840-1844. |
Zhang G L, Liao B, Wu X J,Xiao Y H, Xiao L T, Chen L Y.Effect of high temperature on activities of enzymes associated with starch synthesis and hormones contents in endosperm of rice.J Plant Physiol, 2014, 50(12): 1840-1844.(in Chinese with English abstract) | |
[14] | Yamakawa H, Hirose T, Kuroda M, Yamaguchi T.Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray.Plant Physiol, 2007, 144(1): 258-277. |
[15] | Mitsui T, Shiraya T, Kaneko K, Wada K.Proteomics of rice grain under high temperature stress.Front Plant Sci, 2013, 4: 36. |
[16] | Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H.Suppression of alpha-amylase genes improves quality of rice grain ripened under high temperature.Plant Biotechnol J, 2012, 10(9): 1110-1117. |
[17] | 廖江林, 宋宇, 钟平安, 周会汶, 张宏玉, 黄英金. 耐热和热敏感水稻应答灌浆初期高温胁迫过程中的差异表达蛋白质鉴定. 中国农业科学, 2014, 47(16): 3121-3131. |
Liao J L, Song Y, Zhong P A, Zhou H W, Zhang H Y, Huang Y J.Identification of the differentially expressed proteins between heat-tolerant and heat-sensitive rice responding to high-temperature stress at the early milky stage.Sci Agric Sin, 2014, 47(16): 3121-3131.(in Chinese with English abstract) | |
[18] | Liao J L, Zhou H W, Peng Q, Zhong P A, Zhang H Y, He C, Huang Y J.Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC Genom, 2015, 16: 18. |
[19] | Yamakawa H, Hakata M.Atlas of rice grain filling-related metabolism under high temperature: Joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation.Plant Cell Physiol, 2010, 51(5): 795-809. |
[20] | Liao J L, Zhang H Y, Shao X L, Zhong P A, Huang Y J.Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice.Rice Sci, 2011, 18(4): 279-286. |
[21] | Liao J L, Huang Y J.Evaluation of protocols used in 2-D electrophoresis for proteome analysis of young rice caryopsis.GPB, 2011, 9(6): 229-237. |
[22] | Liao J L, Zhang H Y, Liu J B, Zhong P A, Huang Y J.Identification of candidate genes related to rice grain weight under high-temperature stress.Plant Sci, 2012, 196: 32-43. |
[23] | Frost D C, Greer T, Xiang F, Liang Z, Li L.Development and characterization of novel 8-plex DiLeu isobaric labels for quantitative proteomics and peptidomics.Rapid Commun Mass Spectrom, 2015, 29(12): 1115-1124. |
[24] | Klug A.The discovery of zinc fingers and their applications in gene regulation and genome manipulation.Annu Rev Biochem, 2010, 79: 213-231. |
[25] | Chen Y, Sun A, Wang M, Zhu Z, Ouwerkerk P B.Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice.Plant Mol Biol, 2014, 84(6): 621-634. |
[26] | Sekhar S, Gharat S A, Panda B B, Mohaptra T, Das K, Kariali E, Mohapatra P K, Shaw B P.Identification and characterization of differentially expressed genes in inferior and superior spikelets of rice cultivars with contrasting panicle-compactness and grain-filling properties.PLOS One, 2015, 10(12): e145749. |
[27] | Huang X Y, Chao D Y, Gao J P, Zhu M Z, Shi M, Lin H X.A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.Gene Dev, 2009, 23(15): 1805-1817. |
[28] | Tyagi H, Jha S, Sharma M, Giri J, Tyagi A K.Rice saps are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco.Plant Sci, 2014, 225: 68-76. |
[29] | Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q.A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenicArabidopsis. Planta, 2016, 243(3): 783-797. |
[30] | Yue X, Que Y, Xu L, Deng S, Peng Y, Talbot N J, Wang Z.ZNF1 encodes a putative C2H2 zinc-finger protein essential for appressorium differentiation by the rice blast fungusMagnaporthe oryzae. Mol Plant Microbe Interact, 2016, 29(1): 22-35. |
[31] | Zhang Y, Lan H, Shao Q, Wang R, Chen H, Tang H, Zhang H, Huang J .An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa L.). J Exp Bot, 2016, 67(1): 315-326. |
[32] | Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder J H, Lin F, Lu J.Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungusMagnaporthe oryzae. New Phytol, 2016, doi: 10.1111/nph.13948. |
[33] | Wei C X,Lan S Y, Xu Z X.Ultracytochemical localization and functional analysis of ATPase during the endosperm development in rice (Oryza sativa L. ) . Sci Agric Sin, 2003, 36(3): 259-262. |
[34] | Zhou Z Q,Lan S Y, Xu Z X, Yang Z M.Dynamic change of ATPase activity on amyloplasts and protein bodies during the endosperm development in rice (Oryza sativaL.). Acta Biol Exp Sin, 2005, 38(1): 7-15. |
[35] | Al-Whaibi M H. Plant heat-shock proteins: A mini review.J King Saud Univ-Sci, 2011, 23(2): 139-150. |
[36] | Gonzalez-Schain N, Dreni L, Lawas L M, Galbiati M, Colombo L, Heuer S, Jagadish K S, Kater M M.Genome-wide transcriptome analysis during anthesis reveals new insights into the molecular basis of heat stress responses in tolerant and sensitive rice varieties.Plant Cell Physiol, 2016, 57(1): 57-68. |
[37] | Das S, Krishnan P, Mishra V, Kumar R, Ramakrishnan B, Sinqh N K.Proteomic changes in rice leaves grown under open field high temperature stress conditions.Mol Biol Rep, 2015, 42(11): 1545-1558. |
[38] | Xiang J H, Ran J, Zou J, Zhou X, Liu A, Zhang X, Peng Y, Tang N, Luo G, Chen X.Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice.Plant Cell Rep, 2013, 32(11): 1795-1806. |
[39] | Liu A L, Zou J, Liu C F, Zhou X Y, Zhang X W, Luo G Y, Chen X B.Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice.BMB Rep, 2013, 46(1): 31-36. |
[40] | Zou J, Liu C, Liu A, Zou D, Chen X.Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice.J Plant Physiol, 2012, 169(6): 628-635. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||