中国水稻科学 ›› 2016, Vol. 30 ›› Issue (1): 99-104.DOI: 10.16819/j.1001-7216.2016.5153
徐乾坤, 任德勇, 李自壮, 曾大力, 郭龙彪, 钱前*()
收稿日期:
2015-10-19
修回日期:
2015-10-30
出版日期:
2016-01-10
发布日期:
2016-01-10
通讯作者:
钱前
作者简介:
# 共同第一作者;
基金资助:
XUQian-kun, De-yong REN, Zi-zhuang LI, Da-li ZENG, Long-biao GUO, Qian QIAN*()
Received:
2015-10-19
Revised:
2015-10-30
Online:
2016-01-10
Published:
2016-01-10
Contact:
Qian QIAN
About author:
# These authors contributed equally to this work;
摘要:
水稻(Oryza sativa L.)是世界上重要的粮食作物,也是单子叶植物的模式植物。开花时间、花序和花器官的形态结构对其产量和品质均有重要影响。对花器官形态结构及发育机理的研究有助于提高水稻产量并改良其品质。花器官的形成和发育是水稻从营养生长转向生殖生长的重要过程,其发育模式和分子机理,一直是生物学研究的热点和焦点。水稻小穗的颖壳是禾本科特有的器官,主要包括内外稃、护颖和副护颖,关于其起源和形成的分子机制还知之甚少。近些年对颖壳的研究不断深入,不仅有助于深入认识水稻小穗或花器官的发育,而且能系统地了解水稻小穗或花器官发育的整个调控网络。本文主要介绍了水稻小穗颖壳发育的相关进展及植物花器官发育的ABCDE模型。
中图分类号:
徐乾坤, 任德勇, 李自壮, 曾大力, 郭龙彪, 钱前. 水稻小穗颖壳发育的研究进展[J]. 中国水稻科学, 2016, 30(1): 99-104.
XUQian-kun, De-yong REN, Zi-zhuang LI, Da-li ZENG, Long-biao GUO, Qian QIAN. Research Progresses in Rice Spikelet Glume Development[J]. Chinese Journal OF Rice Science, 2016, 30(1): 99-104.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
MOSAIC FLORAL ORGANS1 (MFO1) | 2 | 内稃内卷,维管束增多,边缘组织缺失,主体结构过度生长, 内稃获得部分外稃的特征 |
CHIMERIC FLORAL ORGANS1 (CFO1) | 1 | 内稃边缘区域扩大且外表面硅化 |
DEPRESSED PALEA1 (DP1) | 6 | 突变导致内稃主体结构完全丢失 |
RETARDED PALEA1 (REP1) | 9 | 内稃主体部分显著退化,内稃变小,而内稃边缘区域则变宽 |
MULTI-FLORET SPIKELET1 (MFS1) | 5 | 内稃的主体部分退化,严重的仅剩下内稃的边缘部分 |
CURVED CHIMERIC PALEA1/DEFORMED FLORAL ORGAN1 (CCP1/DFO1) | 1 | 内稃卷曲皱缩,内稃雌蕊化,外稃特征未发生任何改变 |
LEAFY HULL STERILE1 (LHS1) | 3 | 内外稃和浆片都伸长,同时向叶状器官转化, 内稃的 维管束增多,类似于外稃 |
DEGENERATIVE PALEA (DEP) | 7 | 内外稃都伸长,但内部花器官未受影响 |
STAMENLESS 1 (SL1) | 1 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
OPEN BEAK (OPB) | 8 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
DEGENERATED HULL1 (DH1) | 2 | 内外稃严重退化,仅剩下透明的膜状结构,有些甚至变成 丝状器官 |
TRIANGULAR HULL1 (TH1)/ABNORMAL FLOWER AND DWARF1 (AFD1) | 2 | 内外稃横向和纵向生长均被影响,内外稃变小、增厚 |
DROOPING LEAF (DL) | 3 | 叶片披垂,且内稃伸长 |
表1 内外稃发育相关基因
Table 1 Relative genes of lemma and palea.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
MOSAIC FLORAL ORGANS1 (MFO1) | 2 | 内稃内卷,维管束增多,边缘组织缺失,主体结构过度生长, 内稃获得部分外稃的特征 |
CHIMERIC FLORAL ORGANS1 (CFO1) | 1 | 内稃边缘区域扩大且外表面硅化 |
DEPRESSED PALEA1 (DP1) | 6 | 突变导致内稃主体结构完全丢失 |
RETARDED PALEA1 (REP1) | 9 | 内稃主体部分显著退化,内稃变小,而内稃边缘区域则变宽 |
MULTI-FLORET SPIKELET1 (MFS1) | 5 | 内稃的主体部分退化,严重的仅剩下内稃的边缘部分 |
CURVED CHIMERIC PALEA1/DEFORMED FLORAL ORGAN1 (CCP1/DFO1) | 1 | 内稃卷曲皱缩,内稃雌蕊化,外稃特征未发生任何改变 |
LEAFY HULL STERILE1 (LHS1) | 3 | 内外稃和浆片都伸长,同时向叶状器官转化, 内稃的 维管束增多,类似于外稃 |
DEGENERATIVE PALEA (DEP) | 7 | 内外稃都伸长,但内部花器官未受影响 |
STAMENLESS 1 (SL1) | 1 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
OPEN BEAK (OPB) | 8 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
DEGENERATED HULL1 (DH1) | 2 | 内外稃严重退化,仅剩下透明的膜状结构,有些甚至变成 丝状器官 |
TRIANGULAR HULL1 (TH1)/ABNORMAL FLOWER AND DWARF1 (AFD1) | 2 | 内外稃横向和纵向生长均被影响,内外稃变小、增厚 |
DROOPING LEAF (DL) | 3 | 叶片披垂,且内稃伸长 |
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
LONG STERILE LEMMA/ELONGATED EMPTY GLUME1 (G1/ELE) | 7 | 护颖伸长,形态和结构上与外稃相似,包含四种细胞层和4~5条维管束 |
OsMADS34 | 3 | 护颖伸长,细胞层次和外表面结构都与外稃类似,具有5条维管束 |
SUPER APICAL DORMANT (SAD1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
ABERRANT SPIKELET AND PANICLE1 (ASP1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
表2 护颖发育相关基因
Table 2 Relative genes of sterile lemma.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
LONG STERILE LEMMA/ELONGATED EMPTY GLUME1 (G1/ELE) | 7 | 护颖伸长,形态和结构上与外稃相似,包含四种细胞层和4~5条维管束 |
OsMADS34 | 3 | 护颖伸长,细胞层次和外表面结构都与外稃类似,具有5条维管束 |
SUPER APICAL DORMANT (SAD1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
ABERRANT SPIKELET AND PANICLE1 (ASP1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
FRIZZY PANICLE (FZP) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
SUPERNUMERARY BRACT (SNB) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
MFS1 | 5 | 护颖退化,形态结构类似副护颖 |
OsINDETERMINATE SPIKELET1 (OsIDS1) | 3 | 护颖退化,形态结构类似副护颖 |
OsMADS34 | 3 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
ASP1 | 8 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
表3 副护颖发育相关基因
Table 3 Relative genes of rudimentary glume.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
FRIZZY PANICLE (FZP) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
SUPERNUMERARY BRACT (SNB) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
MFS1 | 5 | 护颖退化,形态结构类似副护颖 |
OsINDETERMINATE SPIKELET1 (OsIDS1) | 3 | 护颖退化,形态结构类似副护颖 |
OsMADS34 | 3 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
ASP1 | 8 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
[1] | Bommert P, Satoh-Nagasawa N, Jackson D, et al.Genetics and evolution of inflorescence and flower development in grasses.Plant Cell Physiol, 2005, 46: 69-78. |
[2] | Itoh J, Nonomura K, Ikeda K, et al.Rice plant development: From zygote to spikelet.Plant Cell Physiol, 2005, 46: 23-47. |
[3] | Ambrose B A, Lerner D R, Ciceri P, et al.Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots.Mol Cell, 2000, 5: 569-597. |
[4] | Kellogg E A.The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. Rice, 2009, 2: 1-14. |
[5] | Hong L, Qian Q, Zhu K, et al.ELE restrains empty glumes from developing into lemmas.J Genet Genom,2010, 37: 101-105. |
[6] | Schmidt R J, Ambrose B A.The blooming of grass flower development.Curr Opin Plant Biol, 1998, 1: 60-67. |
[7] | Coen E S, Meyerowitz E M.The war of the whorls: Genetic interactions controlling flower development.Nature,1991,53: 31-37. |
[8] | Weigel D, Meyerowitz E M.The ABCs of floral homeotic genes.Cell,1994,78: 203-209. |
[9] | Theissen G, Saedler H.Plant biology. Floral quartets.Nature, 2001, 409: 469-471. |
[10] | Soltis D E, Chanderbali A S, Kim S, et al.The ABC model and its applicability to basal angiosperms.Ann Bot, 2007,100: 155-163. |
[11] | Litt A, Kramer E M.The ABC model and the diversification of floral organ identity.Semin Cell Dev Biol, 2010,21: 129-137. |
[12] | Kyozuka J, Kobayashi T, Morita M, et al.Spatially andtemporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.Plant Cell Physiol, 2004,1: 710-718. |
[13] | Shri R Y, Kalika P, Usha V.Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.Genetics, 2007, 176: 283-294. |
[14] | Rita A, Pinky A, Swatismita R, et al.MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress.BMC Genom, 2007, 8: 242. |
[15] | Xiao H, Wang Y, Liu D F, et al.Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference.Plant Mol Biol, 2003, 52: 957-966. |
[16] | Yun D P, Liang W Q, Dreni L, et al.OsMADS16 genetically Interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.Mol Plant, 2013, 6: 743-756. |
[17] | Li H F, Liang W P, Yin C S, et al.Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.Plant Physiol,2011, 156: 263-274. |
[18] | Hu Y, Liang W P, Yin C S, et al.Interactions of OsMADS1 with floral homeotic genes in rice flower development.Mol Plant, 2015, 8:1366-1384. |
[19] | Lin X L, Wu F, Du X Q, et al.The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas.New Phytiol, 2013, 202: 689-702. |
[20] | Kellogg E A.Evolutionary history of the grasses.Plant Physiol, 2001, 125: 1198-1205. |
[21] | Ohmori S, Kimizu M, Sugita M, et al.MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice.Plant Cell, 2009, 21: 3008-3025. |
[22] | Ren D Y, Li Y F, Zhao F M, et al.MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice.Plant Physiol, 2013, 162: 872-884. |
[23] | Thompson B E, Bartling L, Whipple C, et al.Bearded-ear encodes a MADS box transcription factor critical for maize floral development.Plant Cell, 2009, 21:2578-2590. |
[24] | Sang X, Li Y, Luo Z, et al.CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice.Plant Physiol, 2012, 160: 788-807. |
[25] | Jin Y, Luo Q, Tong H, et al.An AT-hook gene is required for palea formation and floral organ number control in rice.Dev Biol, 2011, 359: 277-288. |
[26] | Gallavotti A, Malcomber S, Gaines C, et al.BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears.Plant Cell, 2011, 23: 1756-1771. |
[27] | Yuan Z, Gao S, Xue D W, et al.RETARDED PALEA1 controls palea development and floral zygomorphy in rice.Plant Physiol, 2009, 149: 253-244. |
[28] | Ren D Y, Li Y F, Wang Z, et al.Identification and gene mapping of a multi-floret spikelet 1 (mfs1) mutant associated with spikelet development in rice.J Integer Agr, 2012, 11: 1574-1579. |
[29] | Yan D W, Zhang X M, Zhang L, et al.CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development.Plant J, 2015, 82: 12-24. |
[30] | Prasad K, Parameswaran S, Vijayraghavan U.OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.Plant J, 2005, 43: 915-928. |
[31] | Wang K, Tang D, Hong L, et al.DEP and AFO regulate reproductive habit in rice.PLoS Genet, 2010, 1: 1-9. |
[32] | Duan Y L, Diao Z J, Liu H Q, et al.Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.).Plant Mol Biol, 2010, 74:605-615. |
[33] | Xiao H, Tang J F, Li Y F, et al.STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice.Plant J, 2009, 59:789-801. |
[34] | Li A, Zhang Y, Wu X, et al.A LOB domain-like protein required for glume formation in rice.Plant Mol Biol, 2008, 66:491-502. |
[35] | Sun Q W, Zhou D X.Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development.Proc Natl Acad Sci USA, 2008, 105:13679-13684. |
[36] | Li X J, Sun L J, Tan L B, et al.TH1, a DUF640 domain-like gene controls lemma and palea development in rice.Plant Mol Biol, 2012, 78: 351-359. |
[37] | Ren D, Rao Y, Wu L, et al.The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.J Integr Plant Biol, 2015, doi: 10.1111/jipb.12441. |
[38] | Toriba T, Hirano H Y.The DROOPING LEAF and OsETTIN2 genes promote awn development in rice.Plant J, 2014, 77: 616-626. |
[39] | Li H, Liang W, Hu Y, et al.Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.Plant Cell, 2011,23: 2536-2552. |
[40] | Takeoka Y, Shimizu M, Wada T, et al.Science of the Rice Plant. Vol I. Nobunkyo,Tokyo, 1993, 295-326. |
[41] | Yoshida A, Suzaki T, Tanaka W, et al.The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet.Proc Natl Acad Sci USA, 2009, 106:20103-20108. |
[42] | Kobayashi K, Maekawa M, Miyao A, et al.PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.Plant Cell Physiol, 2010, 51: 47-57. |
[43] | Terrell E E, Peterson P M, Wergin W P.Epidermal features and spikelet micromorphology in Oryza and related genera (Poaceae: Oryzeae).Smithsonian Contr Bot, 2001, 91:1-50. |
[44] | Zamora A, Barboza C, Lobo J, et al.Diversity of native rice (Oryza poaceae) species of Costa Rica.Genet Res Crop Evol, 2003, 50: 855-870. |
[45] | Gao X C, Liang W Q, Yin C S, et al.The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development.Plant Physiol, 2010, 153:728-740. |
[46] | Kaoru K, Masahiko M, Akio M, et al.PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.Plant Cell Physiol, 2010, 51: 47-57. |
[47] | Li W Q, Akiko Y, Megumu T, et al.SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development.Plant J, 2015, 81: 282-291. |
[48] | Akiko Y, Yoshihiro O, Hidemi K, et al.ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.Plant J, 2012, 70: 327-339. |
[49] | Lee D Y, An G.Two AP2 family genes, Supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice.Plant J, 2012, 69: 445-461. |
[50] | Lee D Y, Lee J, Moon S, et al.The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.Plant J, 2007, 49: 64-78. |
[51] | Tsuneo K, Akira H.A novel frameshift mutant allele, fzp-10, affecting the panicle architecture of rice.Euphytica, 2012, 184: 65-72. |
[52] | Yi G, Choi J H, Jeong E G, et al.Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)", in rice (Oryza sativa L.).Hereditas, 2005, 142: 92-97. |
[53] | Mai K, Atsushi C, Yasuo N, et al.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development, 2003, 130: 3841-3850. |
[54] | Li M, Xiong G, Li R, et al.Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth.Plant J, 2009, 60: 1055-1069. |
[55] | Li Y B, Fan C C, Xing Y Z, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 12: 1266-1269. |
[56] | Xu C J, Liu Y, Li Y B, et al.Differential expression of GS5 regulates grain size in rice.J Exp Bot, 2015, 9: 2611-2623. |
[57] | Wang S K, Wu K, Yuan Q B, et al.Control of grain size, shape and quality by OsSPL16 in rice.Nat Genet, 2012, 8: 950-954. |
[58] | Heang D, Sassa H.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoS One, 2012, 2: e31325. |
[59] | Shuhei S, Izumi K, Tsuyu A, et al.Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice.Rice, 2012, 5: 4. |
[60] | Kanako K, Shigeru K, Katsuyuki O, et al.A novel kinesin 13 protein regulating rice seed length.Plant Cell Physiol, 2010, 8: 1315-1329. |
[61] | Wang Y X, Xiong G S, Hu J, et al.Copy number variation at the GL7 locus contributes to grain size diversity in rice.Nat Genet, 2015, 8: 944-948. |
[62] | Zhu W, Tong J P, Wu Y J.Preliminary study and selection of rice germplasm with glume gaping resistance.J Plant Genet Resour, 2004, 5: 52-55. |
[63] | Wei X G, Zhang X W, Shao G N, et al.Fine mapping of BH1, a gene controlling lemma and palea development in rice.Plant Cell Rep, 2013, 9: 1455-1463. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||