中国水稻科学 ›› 2016, Vol. 30 ›› Issue (1): 75-84.DOI: 10.16819/j.1001-7216.2016.5058
收稿日期:
2015-04-02
修回日期:
2015-07-02
出版日期:
2016-01-10
发布日期:
2016-01-10
通讯作者:
马富裕
基金资助:
Hai-bing HE1,2, Ru YANG2, Li-quan WU1, Fu-yu MA2,*()
Received:
2015-04-02
Revised:
2015-07-02
Online:
2016-01-10
Published:
2016-01-10
Contact:
Fu-yu MA
摘要:
膜下滴灌水稻在干旱/半旱区(新疆、宁夏)表现出较高的生产潜力,而优化毛管配置模式和灌溉强度是其实现高产的前提。为此,本研究于石河子地区通过设置毛管配置模式和灌溉强度双因素多水平处理,开展为期一年的小区试验,旨在为膜下滴灌水稻获得高产高效的毛管配置模式和灌溉强度提供理论依据。研究结果表明,综合品种和灌溉强度因素,群体整齐度以1膜4管8行配置(R1)最优,其次是1膜2管8行配置(R2),1膜1管8行配置(R3)最差。 R2模式通过促进近滴灌带行位株穴的生长发育来弥补远滴灌带行位株穴生长发育,最终R2模式的产量、水分利用效率及经济效益与R1差异不显著;由于R3模式下距滴灌带第3行位和第4行位的株穴生长严重受限,进而导致R3模式的产量、水分利用效率及经济效益显著低于R1和 R2模式;总体而言,增加灌溉强度有利于膜下滴灌水稻生长发育。在砂壤土质条件下,膜下滴灌水稻为获得较高的谷物产量,毛管间距以40~80 cm为宜。关键生育期灌溉强度为抽穗前11 mm /d,抽穗后需维持更高的灌量,可以考虑维持在20~25 mm /d。
中图分类号:
何海兵, 杨茹, 武立权, 马富裕. 膜下滴灌水稻优化毛管配置模式及适宜灌溉强度的研究[J]. 中国水稻科学, 2016, 30(1): 75-84.
Hai-bing HE, Ru YANG, Li-quan WU, Fu-yu MA. Optimal Capillary Configuration Modes and Irrigation Intensities for Drip Irrigation with Plastic Film Mulching in Rice[J]. Chinese Journal OF Rice Science, 2016, 30(1): 75-84.
品种 Variety | 处理 Treatment | 模型参数 Logistic parameter | R2 | |||
---|---|---|---|---|---|---|
a | b | k | ||||
宁粳28 Ninjing 28 | R1W1 | 13959.62 | 1260.31 | 0.09 | 0.997 | |
R1W2 | 18552.18 | 1750.93 | 0.08 | 0.993 | ||
R1W3 | 23059.99 | 439.07 | 0.07 | 0.994 | ||
R1W4 | 26257.15 | 304.18 | 0.06 | 0.994 | ||
R2W1 | 12690.57 | 1260.31 | 0.09 | 0.997 | ||
R2W2 | 16865.62 | 1750.73 | 0.08 | 0.993 | ||
R2W3 | 20963.23 | 439.06 | 0.07 | 0.995 | ||
R2W4 | 24870.13 | 304.18 | 0.06 | 0.994 | ||
R3W1 | 7183.76 | 450.71 | 0.08 | 0.989 | ||
R3W2 | 10071.74 | 979.18 | 0.08 | 0.988 | ||
R3W3 | 13414.73 | 296.69 | 0.06 | 0.994 | ||
R3W4 | 17313.09 | 257.91 | 0.07 | 0.996 | ||
月光Yueguang | R1W1 | 15355.59 | 1260.31 | 0.09 | 0.997 | |
R1W2 | 20407.41 | 1750.93 | 0.08 | 0.993 | ||
R1W3 | 25365.51 | 439.07 | 0.07 | 0.994 | ||
R1W4 | 28882.86 | 304.18 | 0.06 | 0.994 | ||
R2W1 | 12275.23 | 1602.29 | 0.10 | 0.994 | ||
R2W2 | 17252.87 | 339.77 | 0.07 | 0.997 | ||
R2W3 | 24052.43 | 212.06 | 0.06 | 0.993 | ||
R2W4 | 27433.39 | 250.51 | 0.06 | 0.995 | ||
R3W1 | 6932.29 | 419.22 | 0.08 | 0.978 | ||
R3W2 | 10446.03 | 191.79 | 0.06 | 0.994 | ||
R3W3 | 15671.68 | 148.88 | 0.05 | 0.992 | ||
R3W4 | 18198.03 | 230.44 | 0.06 | 0.985 |
表1 不同毛管配置模式和灌溉强度下地上部干物质Logistic模型拟合参数
Table 1 Logistic parameters of dry matter weight of aboveground part in rice under different drip-tape configuration modes and irrigation quotas.
品种 Variety | 处理 Treatment | 模型参数 Logistic parameter | R2 | |||
---|---|---|---|---|---|---|
a | b | k | ||||
宁粳28 Ninjing 28 | R1W1 | 13959.62 | 1260.31 | 0.09 | 0.997 | |
R1W2 | 18552.18 | 1750.93 | 0.08 | 0.993 | ||
R1W3 | 23059.99 | 439.07 | 0.07 | 0.994 | ||
R1W4 | 26257.15 | 304.18 | 0.06 | 0.994 | ||
R2W1 | 12690.57 | 1260.31 | 0.09 | 0.997 | ||
R2W2 | 16865.62 | 1750.73 | 0.08 | 0.993 | ||
R2W3 | 20963.23 | 439.06 | 0.07 | 0.995 | ||
R2W4 | 24870.13 | 304.18 | 0.06 | 0.994 | ||
R3W1 | 7183.76 | 450.71 | 0.08 | 0.989 | ||
R3W2 | 10071.74 | 979.18 | 0.08 | 0.988 | ||
R3W3 | 13414.73 | 296.69 | 0.06 | 0.994 | ||
R3W4 | 17313.09 | 257.91 | 0.07 | 0.996 | ||
月光Yueguang | R1W1 | 15355.59 | 1260.31 | 0.09 | 0.997 | |
R1W2 | 20407.41 | 1750.93 | 0.08 | 0.993 | ||
R1W3 | 25365.51 | 439.07 | 0.07 | 0.994 | ||
R1W4 | 28882.86 | 304.18 | 0.06 | 0.994 | ||
R2W1 | 12275.23 | 1602.29 | 0.10 | 0.994 | ||
R2W2 | 17252.87 | 339.77 | 0.07 | 0.997 | ||
R2W3 | 24052.43 | 212.06 | 0.06 | 0.993 | ||
R2W4 | 27433.39 | 250.51 | 0.06 | 0.995 | ||
R3W1 | 6932.29 | 419.22 | 0.08 | 0.978 | ||
R3W2 | 10446.03 | 191.79 | 0.06 | 0.994 | ||
R3W3 | 15671.68 | 148.88 | 0.05 | 0.992 | ||
R3W4 | 18198.03 | 230.44 | 0.06 | 0.985 |
图 2 不同毛管配置模式和灌溉强度下水稻地上部干物质量 R1-1膜4管8行; R2-1膜2管8行;R3-1膜1管8行;W1-灌溉强度为0.55×104 m3/hm2;W2-0.85×104 m3/hm2;W3-1.20×104 m3/hm2;W4-1.50×104 m3/hm2。n=3。下同。
Fig. 2. Dry matter weight accumulated in aboveground part in rice under different drip-tape configuration modes and irrigation intensities. R1,One sheet of plastic film mulching with four drip tapes and eight rows of rice; R2,One sheet of plastic film mulching with two drip tapes and eight rows of rice; R3,One sheet of plastic film mulching with one drip tapes and eight rows of rice; W1,Water irrigation amount of 0.55×104 m3/hm2;W2,0.85×104 m3/hm2;W3,1.20×104 m3/hm2;W4,1.50×104m3/hm2.n=3. The same as below.
品种与处理 Variety and treatment | 每1m2穗数 Panicle number per square metre | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting percentage /% | 千粒重 1000-grain weight /g | 产量 Yield /(×103kg· hm-2) | 水分利用效率 Water use efficiency | 经济效益 Economic benefit /(Yuan·hm-2) |
---|---|---|---|---|---|---|---|
宁粳28 Ningjing 28 | |||||||
R1W4 | 440.56 | 105.67 | 47.14 | 22.01 | 5.89 | 0.39 | 5604 |
R1W3 | 453.24 | 108.99 | 45.3 | 21.39 | 5.27 | 0.44 | 4872 |
R1W2 | 386.58 | 98.42 | 37.74 | 21.17 | 4.13 | 0.49 | 2518 |
R1W1 | 328.78 | 89.77 | 31.35 | 20.22 | 3.54 | 0.64 | 1894 |
R2W4 | 423.24 | 101.98 | 46.13 | 22.03 | 5.97 | 0.40 | 7872 |
R2W3 | 435.76 | 108.52 | 42.83 | 21.36 | 5.11 | 0.41 | 6276 |
R2W2 | 354.14 | 94.52 | 37.63 | 21.05 | 3.98 | 0.49 | 3958 |
R2W1 | 311.58 | 86.43 | 30.83 | 19.84 | 3.35 | 0.61 | 3190 |
R3W4 | 357.52 | 88.07 | 41.33 | 21.98 | 3.27 | 0.22 | -858 |
R3W3 | 359.58 | 87.53 | 38.27 | 21.01 | 2.89 | 0.25 | -744 |
R3W2 | 264.32 | 75.68 | 27.35 | 19.37 | 2.17 | 0.26 | -1568 |
R3W1 | 229.64 | 67.89 | 23.67 | 18.09 | 1.88 | 0.34 | -1112 |
毛管配置(R) | ** | ** | ** | * | ** | ** | |
灌溉强度(W) | ** | * | ** | * | ** | ** | |
R×W | ** | ** | ** | * | ** | ** | |
月光Yueguang | |||||||
R1W4 | 444.46 | 109.42 | 74.38 | 22.87 | 6.23 | 0.42 | 6828 |
R1W3 | 459.87 | 112.35 | 70.88 | 22.43 | 5.44 | 0.45 | 5484 |
R1W2 | 383.45 | 100.78 | 63.88 | 21.96 | 4.37 | 0.51 | 3382 |
R1W1 | 335.31 | 95.35 | 57.94 | 21.45 | 3.79 | 0.69 | 2794 |
R2W4 | 456.47 | 105.34 | 70.43 | 22.52 | 6.17 | 0.41 | 8592 |
R2W3 | 451.42 | 113.52 | 65.78 | 22.03 | 5.32 | 0.44 | 7032 |
R2W2 | 368.79 | 97.56 | 63.24 | 21.67 | 4.29 | 0.51 | 5074 |
R2W1 | 342.15 | 89.88 | 59.77 | 20.51 | 3.49 | 0.64 | 3694 |
R3W4 | 362.24 | 75.33 | 58.34 | 21.36 | 2.64 | 0.18 | -3126 |
R3W3 | 361.43 | 72.18 | 55.16 | 21.27 | 2.26 | 0.19 | -2994 |
R3W2 | 273.15 | 61.88 | 41.59 | 20.55 | 1.69 | 0.21 | -3296 |
R3W1 | 252.29 | 53.35 | 40.38 | 19.64 | 1.48 | 0.27 | -2552 |
毛管配置(R) | ** | ** | ** | * | ** | ** | |
灌溉强度(W) | ** | * | ** | * | ** | ** | |
R×W | ** | ** | ** | * | ** | ** |
表2 不同毛管配置模式及灌溉强度下水稻产量、产量构成因子、水分利用效率及经济效益
Table 2 Grain yield, yield components, water use efficiency and economic benefit of rice under different drip-tape configuration modes and irrigation quotas.
品种与处理 Variety and treatment | 每1m2穗数 Panicle number per square metre | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting percentage /% | 千粒重 1000-grain weight /g | 产量 Yield /(×103kg· hm-2) | 水分利用效率 Water use efficiency | 经济效益 Economic benefit /(Yuan·hm-2) |
---|---|---|---|---|---|---|---|
宁粳28 Ningjing 28 | |||||||
R1W4 | 440.56 | 105.67 | 47.14 | 22.01 | 5.89 | 0.39 | 5604 |
R1W3 | 453.24 | 108.99 | 45.3 | 21.39 | 5.27 | 0.44 | 4872 |
R1W2 | 386.58 | 98.42 | 37.74 | 21.17 | 4.13 | 0.49 | 2518 |
R1W1 | 328.78 | 89.77 | 31.35 | 20.22 | 3.54 | 0.64 | 1894 |
R2W4 | 423.24 | 101.98 | 46.13 | 22.03 | 5.97 | 0.40 | 7872 |
R2W3 | 435.76 | 108.52 | 42.83 | 21.36 | 5.11 | 0.41 | 6276 |
R2W2 | 354.14 | 94.52 | 37.63 | 21.05 | 3.98 | 0.49 | 3958 |
R2W1 | 311.58 | 86.43 | 30.83 | 19.84 | 3.35 | 0.61 | 3190 |
R3W4 | 357.52 | 88.07 | 41.33 | 21.98 | 3.27 | 0.22 | -858 |
R3W3 | 359.58 | 87.53 | 38.27 | 21.01 | 2.89 | 0.25 | -744 |
R3W2 | 264.32 | 75.68 | 27.35 | 19.37 | 2.17 | 0.26 | -1568 |
R3W1 | 229.64 | 67.89 | 23.67 | 18.09 | 1.88 | 0.34 | -1112 |
毛管配置(R) | ** | ** | ** | * | ** | ** | |
灌溉强度(W) | ** | * | ** | * | ** | ** | |
R×W | ** | ** | ** | * | ** | ** | |
月光Yueguang | |||||||
R1W4 | 444.46 | 109.42 | 74.38 | 22.87 | 6.23 | 0.42 | 6828 |
R1W3 | 459.87 | 112.35 | 70.88 | 22.43 | 5.44 | 0.45 | 5484 |
R1W2 | 383.45 | 100.78 | 63.88 | 21.96 | 4.37 | 0.51 | 3382 |
R1W1 | 335.31 | 95.35 | 57.94 | 21.45 | 3.79 | 0.69 | 2794 |
R2W4 | 456.47 | 105.34 | 70.43 | 22.52 | 6.17 | 0.41 | 8592 |
R2W3 | 451.42 | 113.52 | 65.78 | 22.03 | 5.32 | 0.44 | 7032 |
R2W2 | 368.79 | 97.56 | 63.24 | 21.67 | 4.29 | 0.51 | 5074 |
R2W1 | 342.15 | 89.88 | 59.77 | 20.51 | 3.49 | 0.64 | 3694 |
R3W4 | 362.24 | 75.33 | 58.34 | 21.36 | 2.64 | 0.18 | -3126 |
R3W3 | 361.43 | 72.18 | 55.16 | 21.27 | 2.26 | 0.19 | -2994 |
R3W2 | 273.15 | 61.88 | 41.59 | 20.55 | 1.69 | 0.21 | -3296 |
R3W1 | 252.29 | 53.35 | 40.38 | 19.64 | 1.48 | 0.27 | -2552 |
毛管配置(R) | ** | ** | ** | * | ** | ** | |
灌溉强度(W) | ** | * | ** | * | ** | ** | |
R×W | ** | ** | ** | * | ** | ** |
品种、处理和行位 Variety,treatment and row | 株高 Plant height /cm | 每1m2穗数 Panicle number per square metre | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting percentage /% | 一次枝梗数 Primary rachis branch number /(No. m-2) | 二次枝梗数 Secondary rachis branch number /(No. m-2) | 无效穗长 Length of invalid panicle /cm |
---|---|---|---|---|---|---|---|
宁粳28 Ningjing 28 | |||||||
R1 | 82.11 | 405.26 | 91.23 | 40.15 | 10.58 | 14.65 | 1.05 |
R2 | |||||||
第一行First row | 82.83 | 411.24 | 95.07 | 40.90 | 10.67 | 14.67 | 1.16 |
第二行Second row | 80.07 | 371.10 | 86.93 | 38.60 | 10.23 | 13.33 | 1.31 |
差值Differece/% | 3.6 | 9.7 | 8.6 | 5.6 | 4.1 | 9.1 | 11.5 |
R3 | |||||||
第一行First row | 82.53 | 417.15 | 99.14 | 38.37 | 11.13 | 13.89 | 0.89 |
第二行Second row | 81.47 | 422.12 | 107.67 | 40.15 | 12.25 | 14.35 | 0.56 |
第三行Third row | 50.13 | 168.67 | 59.41 | 2.13 | 6.60 | 5.14 | 4.34 |
第四行Fourth row | 32.15 | 92.33 | 34.14 | 1.32 | 2.30 | 3.22 | 8.79 |
差值Differece/% | 0.8~60.5 | 1.0~78.6 | 7.9~68.3 | 4.4~96.7 | 9.1~81.2 | 3.2~77.6 | 50.6~93.6 |
月光 Yueguang | |||||||
R1 | 73.51 | 412.13 | 104.55 | 66.51 | 8.12 | 10.35 | 0.28 |
R2 | |||||||
第一行First row | 75.74 | 421.62 | 109.34 | 69.33 | 7.92 | 9.98 | 0.31 |
第二行Second row | 71.93 | 381.63 | 99.02 | 63.37 | 7.34 | 9.24 | 0.42 |
差值Differece/% | 3.9 | 9.5 | 5.1 | 8.6 | 7.3 | 7.4 | 26.2 |
R3 | |||||||
第一行First row | 73.26 | 424.56 | 106.68 | 67.33 | 7.53 | 10.01 | 0.25 |
第二行Second row | 74.31 | 436.69 | 108.47 | 65.41 | 8.21 | 10.68 | 0.19 |
第三行Third row | 41.14 | 229.87 | 41.59 | 35.21 | 3.25 | 4.11 | 3.88 |
第四行Fourth row | 30.57 | 134.89 | 23.74 | 23.55 | 1.67 | 2.05 | 9.17 |
差值Differece/% | 4.1~58.9 | 6.6~68.8 | 8.1~78.1 | 3.2~64.0 | 8.3~79.7 | 6.3~80.8 | 57.7~97.9 |
表3 不同毛管配置模式下距滴灌带不同行位的水稻主要农艺特性
Table 3 Agronomic traits of rice at different rows under various drip-tape configuration modes.
品种、处理和行位 Variety,treatment and row | 株高 Plant height /cm | 每1m2穗数 Panicle number per square metre | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting percentage /% | 一次枝梗数 Primary rachis branch number /(No. m-2) | 二次枝梗数 Secondary rachis branch number /(No. m-2) | 无效穗长 Length of invalid panicle /cm |
---|---|---|---|---|---|---|---|
宁粳28 Ningjing 28 | |||||||
R1 | 82.11 | 405.26 | 91.23 | 40.15 | 10.58 | 14.65 | 1.05 |
R2 | |||||||
第一行First row | 82.83 | 411.24 | 95.07 | 40.90 | 10.67 | 14.67 | 1.16 |
第二行Second row | 80.07 | 371.10 | 86.93 | 38.60 | 10.23 | 13.33 | 1.31 |
差值Differece/% | 3.6 | 9.7 | 8.6 | 5.6 | 4.1 | 9.1 | 11.5 |
R3 | |||||||
第一行First row | 82.53 | 417.15 | 99.14 | 38.37 | 11.13 | 13.89 | 0.89 |
第二行Second row | 81.47 | 422.12 | 107.67 | 40.15 | 12.25 | 14.35 | 0.56 |
第三行Third row | 50.13 | 168.67 | 59.41 | 2.13 | 6.60 | 5.14 | 4.34 |
第四行Fourth row | 32.15 | 92.33 | 34.14 | 1.32 | 2.30 | 3.22 | 8.79 |
差值Differece/% | 0.8~60.5 | 1.0~78.6 | 7.9~68.3 | 4.4~96.7 | 9.1~81.2 | 3.2~77.6 | 50.6~93.6 |
月光 Yueguang | |||||||
R1 | 73.51 | 412.13 | 104.55 | 66.51 | 8.12 | 10.35 | 0.28 |
R2 | |||||||
第一行First row | 75.74 | 421.62 | 109.34 | 69.33 | 7.92 | 9.98 | 0.31 |
第二行Second row | 71.93 | 381.63 | 99.02 | 63.37 | 7.34 | 9.24 | 0.42 |
差值Differece/% | 3.9 | 9.5 | 5.1 | 8.6 | 7.3 | 7.4 | 26.2 |
R3 | |||||||
第一行First row | 73.26 | 424.56 | 106.68 | 67.33 | 7.53 | 10.01 | 0.25 |
第二行Second row | 74.31 | 436.69 | 108.47 | 65.41 | 8.21 | 10.68 | 0.19 |
第三行Third row | 41.14 | 229.87 | 41.59 | 35.21 | 3.25 | 4.11 | 3.88 |
第四行Fourth row | 30.57 | 134.89 | 23.74 | 23.55 | 1.67 | 2.05 | 9.17 |
差值Differece/% | 4.1~58.9 | 6.6~68.8 | 8.1~78.1 | 3.2~64.0 | 8.3~79.7 | 6.3~80.8 | 57.7~97.9 |
[1] | Yang J C, Zhang J H, Wang Z Q, et al.Hormonal changes in the grains of rice subjected to water stress during grain filling.Plant Physiol, 2001, 127(1): 315-323. |
[2] | Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice.Agric Water Manag, 2001, 49(1): 11-30. |
[3] | Bouman B A M, Peng S B, Castaneda A R, et al. Yield and water use of irrigated tropical aerobic rice systems.Agric Water Manag, 2005, 74(2): 87-105. |
[4] | Bouman B A M, Yang X G, Wang H Q, et al. Aerobic rice (Han Dao): A new way of growing rice in water-short areas// Proceedings of the 12th international soil conservation organization conference, China: Beijing, 2002. |
[5] | Tao H B, Brueck H, Dittert K, et al.Growth and yield formation of rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS).Field Crops Res, 2006, 95(1): 1-12. |
[6] | Zhang L M, Lin S, Bouman B A M, et al. Response of aerobic rice growth and grain yield to N fertilizer at two contrasting sites near Beijing, China.Field Crops Res, 2009, 114: 45-53. |
[7] | Peng S B, Bouman B A M, Visperas R M, et al. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment.Field Crops Res, 2006, 96(2): 252-259. |
[8] | 陈林, 郭庆人. 膜下滴灌水稻栽培技术的形成与发展. 作物研究,2012,26(5):587-588. |
Chen L, Guo Q R.The formation and development of rice cultivation technology in plastic mulch with drip irrigation.Crop Res, 2012, 26(5): 587-588. (in Chinese with English abstract) | |
[9] | 郭庆人, 陈林. 水稻膜下滴灌栽培技术在我国发展的优势及前景分析. 中国稻米, 2012, 18(4): 36-39. |
Guo Q R, Chen L.The advantages and prospects of development of rice planted under plastic mulch with drip irrigation in China.China Rice, 2012, 18(4): 36-39. (in Chinese with English abstract) | |
[10] | Peacock W L, Rolston D E, Aljibury F K, et al.Evaluating drip, flood, and sprinkler irrigation of wine grapes.Amer J Enol Viticul, 1977, 28(4): 193-195. |
[11] | Hodgson A S, Constable G A, Duddy G R, et al.A comparison of drip and furrow irrigated cotton on a cracking clay soil.Irrig Sci, 1990, 11(3), 143-148. |
[12] | Aujla M S, Thind H S, Buttar G S.Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting.Agric Water Manag, 2005, 71(2): 167-179. |
[13] | Daĝdelen N, Başal H, Yılmaz E, et al.Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey.Agric Water Manag, 2009, 96(1): 111-120. |
[14] | Wanjura D F, Upchurch D R, Mahan J R, et al.Cotton yield and applied water relationships under drip irrigation.Agric Water Manag, 2002, 55(3): 217-237. |
[15] | Hanson B, May D.Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability.Agric Water Manag, 2004, 68(1): 1-17. |
[16] | Vázquez N, Pardo A, Suso M L, et al.Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching.Agric Ecosy Environ, 2006, 112(4): 313-323. |
[17] | 胡安焱, 董新光, 魏光辉,等.滴灌条件下水肥耦合对干旱区红枣产量的影响. 灌溉排水学报, 2010, 29(6): 60-63. |
Hu A Y, Dong X G, Wei G H, et al.Coupling effects of water and fertilizer on yield of Chinese jujube under drip irrigation in the arid area.J Irrig Drain, 2010, 29(6): 60-63. (in Chinese with English abstract) | |
[18] | 姚宝林, 孙三民, 孙建,等.节水控盐滴灌对土壤盐分、红枣光合及产量的影响.干旱地区农业研究, 2011, 29(4): 148-152. |
Yao B L, Sun S M, Sun J, et al.Influence of water-saving and salt-controlling drip irrigation on soil salt content, photosynthesis rate and red jujube yield.Agric Res Arid Areas, 2011, 29(4): 148-152 (in Chinese with English abstract). | |
[19] | Phene C J, Davis K R, Hutmacher R B, et al.Effect of high frequency surface and subsurface drip irrigation on root distribution of sweet corn.Irrig Sci, 1991, 12(3): 135-140. |
[20] | Oktem A, Simsek M, Oktem A G.Deficit irrigation effects on sweet corn (Zea mays saccharata Sturt) with drip irrigation system in a semi-arid region: I. Water-yield relationship.Agric Water Manag, 2003, 61(1): 63-74. |
[21] | Liao L J, Zhang L, Bengtsson L.Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation.Irrig Drain Sys, 2008, 22(3/4), 253-270. |
[22] | 杨茹, 何海兵, 廖江,等.滴灌春小麦的籽粒灌浆特性. 麦类作物学报, 2012, 32(4): 743-746. |
Yang Y, He H B, Liao J, et al.Study on grain-filling properties of spring wheat under drip irrigation.J Triti Crops, 2012, 32(4): 743-746. (in Chinese with English abstract) | |
[23] | 程裕伟, 冯治磊, 王谊,等. 滴灌条件下春小麦耗水规律研究.干旱地区农业研究, 2012, 30(2): 112-117. |
Chen Y W, Feng Z L, Wang Y, et al.Study on water consumption rules in spring wheat under drip irrigation.Agric Res Arid Areas, 2012, 30(2): 112-117. (in Chinese with English abstract) | |
[24] | 何庆祥, 张想平, 钱永康,等.甘肃河西灌区啤酒大麦滴灌栽培技术.大麦与谷类科学, 2010, (3): 26-27. |
He Q X, Zhang X P, Qian Y K, et al.Cultivation techniques of malting barley under drip irrigation in Hexi corridor oasis irrigation area of Gansu Province.Barl Cereal Sci, 2010, 3: 26-27. (in Chinese with English abstract) | |
[25] | Isla R, Royo A, Aragüés R.Field screening of barley cultivars to soil salinity using a sprinkler and a drip irrigation system.Plant Soil, 1997, 197(1): 105-117. |
[26] | Li Y, Wallach R, Cohen Y.The role of soil hydraulic conductivity on the spatial and temporal variation of root water uptake in drip-irrigated corn.Plant Soil, 2002, 243(2): 131-142. |
[27] | Du T S, Kang S Z, Zhang J H.Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China.Irrig Sci, 2008, 26: 147-159. |
[28] | Patel N, Rajput T B S. Dynamics and modeling of soil water under subsurface drip irrigated onion.Agric Water Manag, 2008, 95(12): 1335-1349. |
[29] | 蔡焕杰, 邵光成, 张振华. 棉花膜下滴灌毛管布置方式的试验研究. 农业工程学报, 2002, 18(1): 45-49. |
Cai H J, Shao G C, Zhang Z H.The study of capillary configuration modes of cotton in drip irrigation with plastic mulching.Trans CSAE, 2002, 18(1): 45-49. (in Chinese with English abstract) | |
[30] | 廖江. 毛管配置模式与灌溉定额对滴灌春小麦土壤水分分布及产量的影响. 石河子: 石河子大学, 2012. |
Liao J.Effects of different lateral placements and irrigation quotas on soil moisture distribution and grain yield of drip irrigated spring wheat. Shihezi: Shihezi university, 2012. (in Chinese with English abstract) | |
[31] | 杨茹. 水分调控下滴灌春小麦穗发育特性及其空间分异性研究. 石河子: 石河子大学, 2012. |
Yang Y.Study on the characteristics of spikelet differentiation and the differentiation in the space of spring wheat of drip irrigation under water regulation. Shihezi: Shihezi university, 2012. (in Chinese with English abstract) | |
[32] | He H B, Yang R, Ma F Y.Rice root system spatial distribution characteristics at flowering stage and grain yield under plastic mulching drip irrigation (PMDI).J Anim Plant Sci, 2014, 24(1): 290-301. |
[33] | O’Toole J C, Garrity D P. Upland rice soil-plant-water relation-ships. An overview of upland rice research. Los Baños, the Philippines:IRRI, 1984: 394-411. |
[34] | Ekanayake I J, de Datta S K, Steponkus P L. Spikelet sterility and flowering response of rice to water stress at anthesis.Ann Bot, 1989, 63(2): 257-264. |
[35] | Bresler E.Trickle-drip irrigation: Principles and application to soil-Water Management.Adv Agron, 1977, 29(3): 343-393. |
[36] | Ben-Asher J, Yano T, Shainberg I.Dripper discharge rates and the hydraulic properties of the soil.Irrig Drain Sys, 2003, 17(4): 325-340. |
[37] | Badr M A, Taalab A S.Effect of drip irrigation and discharge rate on water and solute dynamics in sandy soil and tomato yield.Austr J Bas Appl Sci, 2007, 1(4): 545-552. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||