[1] |
Goff S A, Ricke D, Lan T H, et al.A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).Science, 2002, 296: 92-100.
|
[2] |
Yu J, Hu S N, Wang J, et al.A draft sequence of the rice genome(Oryza sativa L. ssp. indica).Science, 2002, 296: 79-92.
|
[3] |
Whitfeld P R.A method for the determination of nucleotide sequence in polyribonucleotides.Biochem J, 1954, 58: 390-396.
|
[4] |
Sanger F S, Nicklen, Coulson A R, et al. DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA, 1977, 74: 5463-5467.
|
[5] |
Glenn T C.Field guide to next-generation DNA sequencers.Mol Ecol Resour, 2011, 11: 759-769.
|
[6] |
Sanger F, Air G M, Barrell B G, et al.Nucleotide sequence of bacterioph age phiX174 DNA.Nature, 1977, 265: 687-695.
|
[7] |
Sultan M, Schulz M H, Richard H, et al.A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.Science, 2008, 321: 956-960.
|
[8] |
Samarakoon U.High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum.BMC Genom, 2011, 12: 116-129.
|
[9] |
Mick W.Illuminating the future of DNA sequencing.Genom Biol, 2014, 15: 108-123.
|
[10] |
Deschamps S V, Llaca G D, May G D.Genotyping-by-Sequencing in plants. Biology (Basel), 2012, 1: 460-483.
|
[11] |
Hillier L W, Marth G T, Quinlan A R, et al.Whole-genome sequencing and variant discovery inC. elegans. Nat Methods, 2008, 5: 183-188.
|
[12] |
Margulies M, Egholm M, Altman W E, et al.Genome Sequencing in microfabricated high-density picolitre reactors.Nature, 2005, 437: 376-380.
|
[13] |
Shaffer C.Next-generation sequencing outpaces expectations.Nat Biotechnol, 2007, 25: 149.
|
[14] |
Porreca G j, Zhang K, Li J B, et al. Multiplex amplification of large sets of human exons.Nat Methods, 2007, 4: 931-936.
|
[15] |
Shendure J, Ji H.Next-generation DNA sequencing.Nat Biotechnol, 2008, 26: 1135-1145.
|
[16] |
Schuster S C.Next-generation sequencing transforms today’s biology.Nat Methods, 2008, 5: 16-18.
|
[17] |
Goossens D.Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing.Hum Mutat, 2009, 30: 472-476.
|
[18] |
Deng Y W, Lei Q N, Xiong Y X, et al.Denovo assembly, gene annotation, and simple sequence repeat marker development using Illumina paired-end transcriptome sequences in the pearl oyster Pinctada maxima. Biosci, Biotechnol,Biochem, 2014. 10: e936351.
|
[19] |
Mascher M.Application of genotyping-by-sequencing on semiconductor sequencing platforms: A comparison of genetic and reference-based marker ordering in barley.PLoS One, 2013, 8: e76925.
|
[20] |
Nicholas J L.Performance comparison of benchtop high-throughput sequencing platforms.Nat Biotechnol, 2012, 30: 434-439.
|
[21] |
Jain M, Moharana K C, Shankar R, et al.Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance.Plant Biotechnol J, 2013, 12: 253-264.
|
[22] |
van Tassell C P, Smith T P, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.Nat Methods, 2008, 5: 247-252.
|
[23] |
Kerstens H H, Crooijmans R P, Veenendaal A, et al.Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: Applied to turkey.BMC Genom, 2009, 10: 479-487.
|
[24] |
Sun X W, Liu D Y, Zhang X F, et al.SLAF-seq: An Efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing.PLoS One, 2013. 8: e58700.
|
[25] |
Gao Z Y, Guo L B, Peng Y L, et al.Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences.Proc Natl Acad Sci USA, 2013, 110: 14492-14497.
|
[26] |
Takuji Sasaki, Benjamin Burr.International Rice Genome Sequencing Project: the effort to completely sequence the rice genome.Sci Dir, 2000, 2, 138-142.
|
[27] |
Xu X, Liu X, Ge S, et al.Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes.Nature Biotechnology, 2012, 30: 105-111.
|
[28] |
The 3,000 rice genomes project.Gigascience, 2014, 3: 7-13.
|
[29] |
Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication.Trends Genet, 2007, 23: 578-587.
|
[30] |
Molina J, Sikora M, Garud N, et al.Molecular evidence for a single evolutionary origin of domesticated rice.Proc Natl Acad Sci USA, 2011, 108: 8351-8356.
|
[31] |
Fuller D Q, Qin L.Declining oaks, increasing artistry, and cultivating rice: The environmental and social context of the emergence of farming in the Lower Yangtze Region.Environ Archaeol, 2010, 15: 139-159.
|
[32] |
Huang X H, Kurata N, Wei X H, et al.A map of rice genome variation reveals the origin of cultivated rice.Nature, 2013, 490: 497-501.
|
[33] |
Krishnan S G, Waters D L, Henry R J.Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.PLoS One, 2014, 9: e98843.
|
[34] |
Fawcett J A, Kado T, Sasaki E, et al.QTL map meets population genomics: An application to rice.PLoS One, 2013, 8: e83720.
|
[35] |
Huang X H, Feng Q, Qian Q, et al. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009, 19: 1068--1076.
|
[36] |
Fekih R, Takagi H, Tamiru M, et al.MutMap+: Genetic mapping and mutant identification without crossing in rice.PLoS One, 2013, 8: e68529.
|
[37] |
Takagi H, Uemura A, Yaegashi H, et al.MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii.New Phytol, 2013, 200: 276-283.
|
[38] |
Abe A, Kosugi S, Yoshida K, et al.Genome sequencing reveals agronomically important loci in rice using MutMap.Nat Biotechnol, 2012, 30: 174-178.
|
[39] |
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature, 2007, 447: 661-678.
|
[40] |
Altshuler D, Daly M J, Lander E S.Genetic mapping in human disease.Science, 2008, 322, 881-888.
|
[41] |
Huang X H, Lu T T, Han B, et al.Resequencing rice genomes: An emerging new era of rice genomics.Trends Genet, 2013, 29: 225-230.
|
[42] |
Huang X H, Wei X H, Sang T, et al.Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet, 2010, 42: 961-967.
|
[43] |
Huang X H, Zhao Y, Wei XH, et al.Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm.Nat Genet, 2012, 44: 32-41.
|
[44] |
Wang L, Xie W, Chen Y, et al.A dynamic gene expression atlas covering the entire life cycle of rice.Plant J, 2011, 61: 752-766.
|
[45] |
Sato Y, Antonio B A, Namiki N, et al.RiceXPro: A platform for monitoring gene expression in japonica rice grown under natural field conditions.Nucleic Acids Res, 2011, 39: 1141-1148.
|
[46] |
Mizuno H, Kawahwrw Y, Wu J Z, et al.Asymmetric distribution of gene expression in the centromeric region of rice chromosome 5.Front Plant Sci, 2011, 2: e00016.
|
[47] |
Zhai R R, Feng Y, Wang H M, et al.Transcriptome analysis of rice root heterosis by RNA-Seq.BMC Genom, 2013, 14: 1471-2164.
|
[48] |
Zhai R R, Feng Y, Zhan X D, et al.Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou 9308.PLoS One, 2013, 8: e60668.
|
[49] |
Wang C, Zhang D.A novel compression tool for efficient storage of genome resequencing data.Nucleic Acids Res, 2011, 39: e45.
|
[50] |
Hu W H, Wang T Z, Yue E K, et al.Flexible microRNA arm selection in rice.Biochem Biophys Res Commun, 2012, 447: 526-530.
|
[51] |
Chodavarapu R K, Feng S, Ding B, et al.Transcriptome and methylome interactions in rice hybrids.Proc Natl Acad Sci USA, 2012, 109: 12040-12045.
|
[52] |
Arenhart R A, Bai Y, Wang Z Y, et al.New insights into aluminum tolerance in rice: The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes.Mol Plant, 2014, 7: 709-721.
|
[53] |
Eid J, Fehr A, Gray J, et al.Real-time DNA sequencing from single polymerase molecules.Science, 2009, 323: 133-138.
|
[54] |
Levene M J, Korlach J, Turner S W, et al.Zero-mode waveguides for single-molecule analysis at high concentrations.Science, 2003, 299: 682-686.
|
[55] |
Harris T D, Buzby P R, Babcock H, et al.Single-molecule DNA sequencing of a viral genome.Science, 2008, 320: 106-109.
|
[56] |
Tombacz D, Sharon D, Olah P, et al.Strain kaplan of pseudorabies virus genome sequenced by pacBio single-molecule real-time sequencing technology.Genome Announc, 2014, 2: e006028.
|
[57] |
Stoddart D, Heron A J, Mikhailova E, et al.Single-nueleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore.Proc Natl Acad Sci USA, 2009, 106: 7702-7707.
|