中国水稻科学 ›› 2015, Vol. 29 ›› Issue (2): 181-190.DOI: 10.3969/j.issn.1001-7216.2015.02.010
商庆银, 杨秀霞, 成臣, 罗亢, 黄山, 石庆华, 潘晓华, 曾勇军*()
收稿日期:
2014-08-19
修回日期:
2014-11-06
出版日期:
2015-03-10
发布日期:
2015-03-10
通讯作者:
曾勇军
基金资助:
Qing-yin SHANG, Xiu-xia YANG, Chen CHENG, Kang LUO, Shan HUANG, Qing-hua SHI, Xiao-hua PAN, Yong-jun ZENG*()
Received:
2014-08-19
Revised:
2014-11-06
Online:
2015-03-10
Published:
2015-03-10
Contact:
Yong-jun ZENG
摘要:
以南方红壤区双季稻-紫云英为研究对象,利用静态箱-气相色谱法分别分析包括绿肥和稻草等秸秆还田条件下不同水分管理对稻田CH4和N2O排放、水稻产量以及综合温室效应(GWP)的影响。试验设持续淹水(F)、中期烤田(F-D-F)和间歇灌溉(F-D-F-M)处理。结果表明,秸秆还田条件下双季稻田周年CH4排放量介于208.3 kg/hm2(F-D-F-M处理)和678.2 kg/hm2(F处理)之间,其中,晚稻生长季占周年CH4排放量的60.6%~71.7%。F处理周年CH4排放量显著高于F-D-F和F-D-F-M处理(P<0.05)。秸秆还田条件下双季稻田周年N2O排放量为4.75~8.19 kg/hm2。与F处理相比,F-D-F-M处理周年N2O排放通量显著增加(60.9%);而F和F-D-F处理之间没有显著差异。早稻和晚稻各处理产量分别为7.76~8.02 t/hm2和7.22~8.69 t/hm2。秸秆还田条件下,双季稻单位面积GWP和单位产量GWP分别为7648.8~18471.8 kg/hm2和0.48~1.12 kg/kg,其中F-D-F和F-D-F-M处理分别显著低于F处理(P<0.05)。因此,在秸秆还田条件下采用中期烤田和间歇灌溉替代持续淹水,可以同步实现双季稻高产和减轻农业生产对气候的潜在影响。
中图分类号:
商庆银, 杨秀霞, 成臣, 罗亢, 黄山, 石庆华, 潘晓华, 曾勇军. 秸秆还田条件下不同水分管理对双季稻田综合温室效应的影响[J]. 中国水稻科学, 2015, 29(2): 181-190.
Qing-yin SHANG, Xiu-xia YANG, Chen CHENG, Kang LUO, Shan HUANG, Qing-hua SHI, Xiao-hua PAN, Yong-jun ZENG. Effects of Water Regime on Yield-scaled Global Warming Potential Under Double Rice-Cropping System With Straw Returning[J]. Chinese Journal OF Rice Science, 2015, 29(2): 181-190.
图1 水稻生长季田间水层深度变化 F-持续淹水; F-D-F-中期烤田;F-D-F-M-间歇灌溉。
Fig.1. Temporal variation of water depth during the rice-growing seasons. F, Continuous flooding; F-D-F, Flooding-drainage-reflooding; F-D-F-M, Flooding-drainage-reflooding-moist intermittent irrigation.
图2 秸秆还田条件下双季稻种植季CH4排放通量变化
Fig. 2. Variation of CH4 fluxes during double rice growing seasons in double rice-cropping system with crop residue returning.
处理 Treatment | 早稻季 Early-rice season | 晚稻季 Late-rice season | 紫云英生长季 Chinese milk vetch season | 周年 Annual total |
---|---|---|---|---|
F | 191.6±31.8 a | 486.6±86.4 a | 0.50±0.05 a | 678.2±115.9 a |
F-D-F | 105.3±12.4 b | 217.1±30.5 b | 0.17±0.12 b | 322.6± 32.4 b |
F-D-F-M | 81.5± 8.3 b | 126.3±82.7 b | 0.58±0.12 a | 208.3± 74.4 b |
表1 秸秆还田条件下各处理CH4排放量
Table 1 Seasonaland annual CH4 emissions under crop residue incorporated in double rice-cropping systems.kg/hm2
处理 Treatment | 早稻季 Early-rice season | 晚稻季 Late-rice season | 紫云英生长季 Chinese milk vetch season | 周年 Annual total |
---|---|---|---|---|
F | 191.6±31.8 a | 486.6±86.4 a | 0.50±0.05 a | 678.2±115.9 a |
F-D-F | 105.3±12.4 b | 217.1±30.5 b | 0.17±0.12 b | 322.6± 32.4 b |
F-D-F-M | 81.5± 8.3 b | 126.3±82.7 b | 0.58±0.12 a | 208.3± 74.4 b |
图3 秸秆还田条件下紫云英生长季CH4和N2O排放通量变化
Fig. 3. Variations of CH4 and N2O fluxes during Chinese milk vetch growing season in double rice-cropping system with crop residue returning.
图4 秸秆还田条件下双季稻种植季N2O排放通量变化
Fig.4. Variation of N2O fluxes during double rice growing seasons in double rice-cropping system with crop residue returning.
处理 Treatment | 早稻季 Early-rice season | 晚稻季 Late-rice season | 紫云英生长季 Chinese milk vetch season | 周年 Annual total |
---|---|---|---|---|
F | 0.77±0.25 a | 1.05±0.25 b | 3.27±0.17 a | 5.09±0.36 b |
F-D-F | 1.02±0.48 a | 0.94±0.34 b | 2.79±0.34 a | 4.75±0.60 b |
F-D-F-M | 2.66±2.33 a | 2.28±0.93 a | 3.25±0.66 a | 8.19±1.15 a |
表2 秸秆还田条件下各处理N2O排放量
Table 2 Seasonal and annual N2O emissions in double rice-cropping system with crop residue returning .kg/hm2
处理 Treatment | 早稻季 Early-rice season | 晚稻季 Late-rice season | 紫云英生长季 Chinese milk vetch season | 周年 Annual total |
---|---|---|---|---|
F | 0.77±0.25 a | 1.05±0.25 b | 3.27±0.17 a | 5.09±0.36 b |
F-D-F | 1.02±0.48 a | 0.94±0.34 b | 2.79±0.34 a | 4.75±0.60 b |
F-D-F-M | 2.66±2.33 a | 2.28±0.93 a | 3.25±0.66 a | 8.19±1.15 a |
生长季与处理 Growing season and treatment | 有效穗数 Number of effective tillers /(×104 hm-2) | 每穗粒数 Grain number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 产量 Grain yield /(t·hm-2) |
---|---|---|---|---|---|
早稻 Early rice | |||||
F | 330.0±25.2 a | 139.2±14.7 a | 82.7±4.3 a | 25.8±0.1 a | 7.76±0.36 a |
F-D-F | 317.3±41.5 a | 143.4± 6.3 a | 84.5±0.5 a | 25.4±0.1 a | 8.01±1.36 a |
F-D-F-M | 325.7±22.9 a | 144.0±17.4 a | 84.8±1.1 a | 24.9±0.8 a | 8.02±0.28 a |
晚稻 Late rice | |||||
F | 400.4±43.2 a | 154.9± 5.3 a | 77.5±6.7 a | 24.6±0.9 a | 8.69±0.70 a |
F-D-F | 379.6±36.8 a | 157.0± 5.6 a | 79.9±1.3 a | 25.0±0.5 a | 7.22±1.19 a |
F-D-F-M | 391.6±23.9 a | 153.4± 3.2 a | 74.6±4.6 a | 24.8±0.3 a | 8.03±0.26 a |
表3 秸秆还田条件下各处理水稻产量及其构成因素
Table 3 Grain yield and its components under different water regime treatments in double rice-cropping system with crop residue returning.
生长季与处理 Growing season and treatment | 有效穗数 Number of effective tillers /(×104 hm-2) | 每穗粒数 Grain number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 产量 Grain yield /(t·hm-2) |
---|---|---|---|---|---|
早稻 Early rice | |||||
F | 330.0±25.2 a | 139.2±14.7 a | 82.7±4.3 a | 25.8±0.1 a | 7.76±0.36 a |
F-D-F | 317.3±41.5 a | 143.4± 6.3 a | 84.5±0.5 a | 25.4±0.1 a | 8.01±1.36 a |
F-D-F-M | 325.7±22.9 a | 144.0±17.4 a | 84.8±1.1 a | 24.9±0.8 a | 8.02±0.28 a |
晚稻 Late rice | |||||
F | 400.4±43.2 a | 154.9± 5.3 a | 77.5±6.7 a | 24.6±0.9 a | 8.69±0.70 a |
F-D-F | 379.6±36.8 a | 157.0± 5.6 a | 79.9±1.3 a | 25.0±0.5 a | 7.22±1.19 a |
F-D-F-M | 391.6±23.9 a | 153.4± 3.2 a | 74.6±4.6 a | 24.8±0.3 a | 8.03±0.26 a |
[1] | 张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2,CH4,N2O)的源/汇强度及其温室效应研究进展.中国生态农业学报,2011,4:966-975. |
[2] | Kiehl J T, Trenberth K E.Earth’s annual global mean energy budget.Bull Amer Meteorol Soc, 1997, 78(2): 197-208. |
[3] | IPCC.Technical summary//Climate Change 2007: The physical science basis contribution of working Group I to the Fourth Assessment Report of the IPCC. New York: Cambridge University Press, 2007: 31-34. |
[4] | Smith P, Martino D, Cai Z, et al.Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric, Ecosys Environ, 2007, 118(1-4): 6-28. |
[5] | Lu F, Wang X, Han B, et al.Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland.Glob Change Biol, 2009, 15(2): 281-305. |
[6] | Shang Q Y, Yang X X, Gao C M, et al.Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments.Glob Change Biol, 2011, 17: 2196-2210. |
[7] | Yang X, Shang Q, Wu P, et al.Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan, China. Agric, Ecosys Environ, 2010, 137: 308-316. |
[8] | Cai Z C.A category for estimate of CH4 emission from rice paddy fields in China.Nutr Cycl Agroecosys, 1997, 49, 171-179. |
[9] | Mishra S, Rath A K, Adhya T K, et al.Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions.Biol Fertil Soils, 1997, 24: 399-405. |
[10] | Zou J, Huang Y, Jiang J, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, fertilizer application. Glob Biogeochem Cycl, 2005, 19, GB2021, doi: 10.1029/200GB002401. |
[11] | Cai Z C, Xing G, Yan X, et al.Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management.Plant Soil, 1997, 196: 7-14. |
[12] | Zheng X, Wang M, Wang Y,et al.Impacts of soil moisture on nitrous oxide emission from croplands: A case study on rice-based agro-ecosystem in Southeast China.Chemos Glob Change Sci, 2000, 2: 207-224. |
[13] | Olk D C, Brunetti G, Senesi N.Decrease in humification of organic matter with intensified lowland rice cropping: A wet chemical and spectroscopic investigation.Soil Sci Soc Amer J, 2000, 64: 1337-1347. |
[14] | Mandal B, Majumder B, Adhya T K, et al.Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate.Glob Change Biol, 2008, 14: 2139-2151. |
[15] | Mosier A R, Halvorson A D, Reule C A,et al.Net global warming potential and greenhouse gas intensity in irrigated cropping systems in Northeastern Colorado.J Environ Qual, 2006, 35: 1584-1598. |
[16] | Ali M A, Hoque M A, Kim P J.Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.Ambio, 2013, 42: 357-368. |
[17] | Kim S, Lee C, Gutierrez J,et al.Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation.Plant Soil, 2013, 366(1-2): 273-286. |
[18] | Zhang B, Pang C Q, Qin J T,et al.Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field.Biol Fertil Soils, 2013, 49: 1039-1052. |
[19] | van Groenigen J W, Velthof G L, Oenema O,et al. Towards an agronomic assessment of N2O emissions: A case study for arable crops.Eur J Soil Sci, 2010, 61: 903-913. |
[20] | 朱德峰,陈惠哲,徐一成,等.我国双季稻生产机械化制约因子与发展对策.中国稻米,2013,19(4):1-4. |
[21] | 王卫,谢小立,谢永宏.不同水分管理模式对水稻生长及光合特性的影响.长江流域资源与环境,2010,07:746-751. |
[22] | 陈婷婷,杨建昌.移栽水稻高产高效节水灌溉技术的生理生化机理研究进展.中国水稻科学,2014,01:103-110. |
[23] | 蔡祖聪,徐华,马静. 稻田生态系统CH4和N2O排放. 合肥:中国科学技术大学出版社,2009. |
[24] | 中国科学院南京土壤研究所土壤物理研究室编. 土壤物理性质测定法. 北京:科学出版社,1978. |
[25] | 鲍士旦. 土壤农化分析. 北京:农业出版社,2006. |
[26] | Pan G X, Li L Q, Wu L S, et al.Storage and sequestration potential of topsoil organic carbon in China’s paddy soils.Glob Change Biol, 2003, 10: 79-92. |
[27] | 张广斌,李香兰,马静,等.水分管理对稻田土壤CH4产生、氧化及排放的影响.生态环境学报,2009,18(3):1066-1070. |
[28] | 蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N2O排放的影响.中国环境科学,2003,23(5):552-556. |
[29] | 李香兰,马静,徐华,等.水分管理对水稻生长期CH4和N2O排放季节变化的影响.农业环境科学学报,2008,27(2): 535-541. |
[30] | 康新立,华银锋,田光明,等.土壤水分管理对甲烷和氧化亚氮排放的影响.中国环境管理干部学院学报,2013,23(2):43-46. |
[31] | Khalil M A K, Shearer M J, Rasmussen R A, et al. Methane and nitrous oxide emissions from subtropical rice agriculture in China. J Geophy Res (Biogeosciences), 2008, 113, G00A05, doi:10.1029/2007JG000462. |
[32] | Yan X, Yagi K, Akiyama H, et al.Statistical analysis of the major variables controlling methane emission from rice fields.Glob Change Biol, 2005, 11: 1131-1141. |
[33] | 邹晓霞,李玉娥,高清竹,等.中国农业领域温室气体主要减排措施研究分析.生态环境学报,2011,20(8-9):1348-1358. |
[34] | 商庆银. 长期不同施肥制度下双季稻田土壤肥力与温室气体排放规律的研究.南京:南京农业大学,2012. |
[35] | 石生伟,李玉娥,秦晓波,等.不同施肥处理对红壤晚稻田CH4排放的影响.生态与农村环境学报,2010,26(2):103-108. |
[36] | 傅志强,黄璜,陈灿,等.稻-鸭复合系统中灌水深度对甲烷排放的影响.湖南农业大学学报:自然科学版,2006,32(6):632-636. |
[37] | 邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素.环境科学学报,2003,23(6):758-764. |
[38] | Xu H, Cai Z C, Jia Z J, et al.Effect of land management in winter crop season on CH4 emission during the following flooded and rice-growing period.Nutr Cycl Agroecos, 2000, 58, 327-332. |
[39] | Sass R L, Fisher F M, Wang Y B, et al.Methane emission from rice fields: the effect of floodwater management.Glob Biogeochem Cyc, 1992, 6(3): 249-262. |
[40] | 袁伟玲,曹凑贵,程建平,等.间歇灌溉模式下稻田CH4和N2O排放及温室效应评估.中国农业科学,2008,41(12):4294-4300. |
[41] | 李香兰,徐华,蔡祖聪.稻田CH4和N2O排放消长关系及其减排措施.农业环境科学学报,2008,27(6):2123-2130. |
[42] | 徐华,邢光熹,蔡祖聪.土壤水分状况和氮肥施用及品种对稻田N2O排放的影响.应用生态学报,1999,10(2):186-188. |
[43] | Akiyama H, Yagi K, Yan X. Direct N2O emissions from rice paddy fields: Summary of available data. Glob Biogeochem Cycl, 2005, 19, GB105, doi: 10.1029/2004GB002378. |
[44] | Bouwman A F, Boumans L J M, Batjes N H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data.Glob Biogeochem Cycl, 2002, 16: 1058-1070. |
[45] | Yan X, Akimoto H, Ohara T.Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia.Glob Change Biol, 2003, 9: 1080-1096. |
[46] | Zheng X, Han S, Huang Y, et al. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Glob Biogeochem Cycl, 2004, 18, GB2018, doi:10.1029/2003GB002167. |
[47] | Qin Y, Liu S, Guo Y, et al.Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China.Biol Fertil Soils, 2010, 46(8): 825-834. |
[48] | Li C, Salas W, De Angelo B, et al.Assessing alternative for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.J Environ Qual, 2006, 35: 1554-1565. |
[49] | 秦华东,江立庚,肖巧珍,等.水分管理对免耕抛秧水稻根系生长及产量的影响.中国水稻科学,2013,27(2):209-212. |
[50] | 龙水波,曾敏,周航,等.不同水分管理模式对水稻吸收土壤砷的影响.环境科学学报,2014,34(4):1003-1008. |
[51] | Liao Q, Zhang X, Li Z, et al.Increase in soil organic carbon stock over the last decades in China’s Jiangsu province.Glob Change Biol, 2009, 15: 861-875. |
[52] | Sun W, Huang Y, Zhang W, et al.Estimating topsoil SOC sequestration in croplands of eastern China from 1980-2000.Austr J Soil Res, 2009, 47: 261-272. |
[53] | 林而达,李玉娥,郭李萍,等. 中国农业土壤固碳潜力与气候变化. 北京:科学出版社,2005:137. |
[1] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[2] | 唐志伟, 朱相成, 张俊, 邓艾兴, 张卫建. 水分调控下绿肥种植和石灰施用对双季稻稻米镉含量的影响[J]. 中国水稻科学, 2024, 38(2): 211-222. |
[3] | 马晓慧, 邢亚楠, 郭莉, 刘郁, 车喜庆, 桑海旭. 辽宁盘锦地区稻飞虱天敌螯蜂种群动态研究[J]. 中国水稻科学, 2024, 38(1): 99-105. |
[4] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
[5] | 曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜. 秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响[J]. 中国水稻科学, 2022, 36(5): 543-550. |
[6] | 余锋, 李思宇, 邱园园, 卓鑫鑫, 黄健, 汪浩, 朱安, 刘昆, 刘立军. 稻田甲烷排放的微生物学机理及节水栽培对甲烷排放的影响[J]. 中国水稻科学, 2022, 36(1): 1-12. |
[7] | 李睿, 董立强, 商文奇, 马亮, 王先俱, 王铮, 李跃东. 育秧基质和喷水间隔处理对机插秧苗素质及产量的影响[J]. 中国水稻科学, 2021, 35(1): 59-68. |
[8] | 陈国奇, 唐伟, 李俊, 陆永良, 董立尧. 我国水稻田稗属杂草种类分布特点:以9个省级行政区73个样点调查数据为例[J]. 中国水稻科学, 2019, 33(4): 368-376. |
[9] | 张文学, 杨成春, 王少先, 孙刚, 刘增兵, 李祖章, 刘光荣. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31(4): 417-424. |
[10] | 朱平阳, 郑许松, 张发成, 徐红星, 姚晓明, 杨亚军, 陈桂华, 吕仲贤. 应用生态工程技术控制水稻害虫对水生昆虫数量的影响[J]. 中国水稻科学, 2017, 31(2): 207-215. |
[11] | 董春华1,2,3 ,曾闹华3 ,高菊生2,3,*,刘强1,* ,徐明岗3 ,文石林2,3 . 长期不同施肥模式下红壤性稻田水稻产量及有机碳含量变化特征[J]. 中国水稻科学, 2014, 28(2): 193-198. |
[12] | 马殿荣*,孔德秀,高齐,徐凡,赵明辉,唐亮,徐正进,陈温福*. 杂草稻对东北移栽稻群体生长环境及产量的影响[J]. 中国水稻科学, 2014, 28(2): 211-216. |
[13] | 王丽丽1 ,闫晓君1 ,江瑜1 ,田云录3 ,邓艾兴2 ,张卫建1,2,*. 超级稻宁粳1号与常规粳稻CH4排放特征的比较分析[J]. 中国水稻科学, 2013, 27(4): 413-418. |
[14] | 秦华东1,2,江立庚1,*,肖巧珍1,徐世宏3 . 水分管理对免耕抛秧水稻根系生长及产量的影响[J]. 中国水稻科学, 2013, 27(2): 209-212. |
[15] | 周胜1,宋祥甫1,* ,颜晓元2. 水稻低碳生产研究进展[J]. 中国水稻科学, 2013, 27(2): 213-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||