[1] |
郭朝晖, 李合松, 张杨珠, 等. 磷素水平对杂交水稻生长发育和磷素运移的影响. 中国水稻科学, 2002, 16(2): 151-156.
|
[2] |
唐湘如, 余铁桥. 磷钾肥对饲用稻产量和蛋白质含量的影响及其机理研究. 中国农业科学, 2002, 35(4): 372-377.
|
[3] |
Raboy V.Seeds for a better future:‘Low phytate’grains help to overcome malnutrition and reduce pollution.Trend Plant Sci, 2001, 6(10): 458-462.
|
[4] |
Loewus F A, Murthy P.Myo-inositol metabolism in plants.Plant Sci, 2000, 150(1): 1-19.
|
[5] |
Wilcox J R, Premachandra G S, Young K A, et al.Isolation of high seed inorganic P, low-phytate soybean mutants.Crop Sci, 2000, 40(6): 1601-1605.
|
[6] |
Saneoka H, Koba T.Plant growth and phytic acid accumulation in grain as affected by phosphorus application in maize (Zea mays L.).Grassl Sci, 2003, 48(6): 485-489.
|
[7] |
Raboy V, Dickinson D B.Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc.Plant Physiol, 1984, 75(4): 1094-1098.
|
[8] |
Jackson C A, Windes J M, Bregitzer P, et al.Phosphorus fertility effects on the expression of the low phytic acid barley phenotype.Crop Sci, 2009, 49(5): 1800-1806.
|
[9] |
毛盈, 陈鑫, 裘波音, 等. 氮磷肥用量与配比对大麦籽粒植酸含量的影响. 浙江大学学报: 农业与生命科学版, 2009, 35(3): 285-291.
|
[10] |
赵宁春, 张其芳, 程方民, 等. 氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性. 中国水稻科学, 2007, 21(2): 185-190.
|
[11] |
郭再华, 贺立源, 徐才国. 磷水平对不同磷效率水稻生长及磷、锌养分吸收的影响. 中国水稻科学, 2005, 19(4): 355-360.
|
[12] |
王人民, 张永鑫, 杨肖娥, 等. 水稻锌高效营养特性的遗传分析. 植物营养与肥料学报, 2003, 9(2): 196-202.
|
[13] |
浙江大学. 一种直穗型水稻的穗离体培养方法: 中国, CN103355169B.2014-07-01
|
[14] |
Liu Z, Cheng F, Zhang G.Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content.Food Chem, 2005, 89(1): 49-52.
|
[15] |
Wei Y Y, Shohag M, Wang Y Y, et al.Effect of zinc sulfate fortification in germinated brown rice on seed zinc concentration, bioavailability, and seed germination.J Agric Food Chem, 2012, 60(7): 1871-1879.
|
[16] |
龚金龙, 张洪程, 李杰, 等. 施磷量对超级稻南粳44产量和品质的影响. 中国水稻科学, 2011, 25(4): 447-451.
|
[17] |
梁建生, 曹显祖, 徐生. 蔗糖和激素对水稻离体培养穗籽粒生长的影响. 中国水稻科学, 1993, 7(2): 77-82.
|
[18] |
王苏影, 潘晓华, 吴建富, 等. 磷肥运筹对双季早、晚稻产量与品质的影响. 作物杂志, 2011(4): 63-66.
|
[19] |
Matsuno K, Fujimura T. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice. Plant Sci, 2014, 217/218(1): 152-157
|
[20] |
Blair M W, Sandoval T A, Caldas G V, et al.Quantitative trait locus analysis of seed phosphorus and seed phytate content in a recombinant inbred line population of common bean.Crop Sci, 2009, 49(1): 237-246.
|
[21] |
Israel D W, Kwanyuen P, Burton J W.Genetic variability for phytic acid phosphorus and inorgaic phosphorus in seeds of soybeans in maturity groups V, VI, and VII.Crop Sci, 2006, 46(1): 67-71.
|
[22] |
李洪影, 焉石, 孙涛, 等. 施磷对不同收获时期青贮玉米碳水化合物积累的影响. 草业学报, 2011, 20(4): 90-97.
|
[23] |
Gibson T S, Leece D R.Estimation of physiologically active zinc in maize by biochemical assay.Plant Soil, 1981, 63(3): 395-406.
|
[24] |
Suzuki M, Tanaka K, Kuwano M, et al.Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): Implications for the phytic acid biosynthetic pathway.Gene, 2007, 405(1/2): 55-64.
|
[25] |
Hitz W D, Carlson T J, Kerr P S, et al.Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds.Plant Physiol, 2002, 128(2): 650-660.
|
[26] |
Yuan F J, Zhu D H, Deng B, et al.Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).J Agric Food Chem, 2009, 57(9): 3632-3638.
|
[27] |
Ali N, Paul S, Gayen D, et al.Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1).PloS One, 2013, 8(7): e68161
|
[28] |
赵宁春, 韦克苏, 吴殿星, 等. 低植酸突变体水稻灌浆过程中籽粒淀粉合成与茎鞘物质转运特性. 作物学报, 2008, 34(11): 1977-1984.
|
[29] |
Khodakovskaya M, Sword C, Wu Q, et al.Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato.Plant Biotechnol J, 2010, 8(2): 170-183.
|