中国水稻科学 ›› 2015, Vol. 29 ›› Issue (1): 14-21.DOI: 10.3969/j.issn.1001-7216.2015.01.002
成钦淑#, 叶邦全#, 袁灿#, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟*()
收稿日期:
2014-02-19
修回日期:
2014-08-15
出版日期:
2015-01-10
发布日期:
2015-01-10
通讯作者:
陈学伟
基金资助:
Qin-shu CHENG#, Bang-quan YE#, Can YUAN#, Wei-tao LI, Jun-jie YIN, Jing WANG, Min HE, Ji-chun WANG, Yu-ping WANG, Shi-gui LI, Xue-wei CHEN*()
Received:
2014-02-19
Revised:
2014-08-15
Online:
2015-01-10
Published:
2015-01-10
Contact:
Xue-wei CHEN
摘要:
白条纹叶突变体 st11是从粳稻品种Kitaake组培过程中获得的。该突变体在分蘖前叶色表现为正常,从分蘖期开始新生叶表现为白条纹直至成熟期。与野生型相比,该突变体的分蘖、株高、结实率和千粒重等农艺性状没有发生明显变化。遗传分析表明该突变体白条纹叶性状受一对隐性核基因控制。利用该突变体分别与水稻02428、Jodan杂交构建了两个F2群体用于基因定位。通过集群分离分析(bulked segregant analysis)发现该基因位于第1染色体端粒附近,并与分子标记RM151和RM10080连锁。进一步利用更多分子标记分析F2群体,我们将该基因定位于I10和I26两个标记之间大约270kb的区间内。
中图分类号:
成钦淑, 叶邦全, 袁灿, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟. 水稻白条纹叶突变体 st11的遗传分析与基因定位[J]. 中国水稻科学, 2015, 29(1): 14-21.
Qin-shu CHENG, Bang-quan YE, Can YUAN, Wei-tao LI, Jun-jie YIN, Jing WANG, Min HE, Ji-chun WANG, Yu-ping WANG, Shi-gui LI, Xue-wei CHEN. Genetic Analysis and Gene Mapping of White Stripe Leaf Mutant st11 in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(1): 14-21.
分子标记 Marker | 正向引物 Forward primer | 反向引物 Reverse primer | 物理距离a Distance/Mba |
---|---|---|---|
I26 | ATTCAGAAGGTGATGCTCCG | GATATGTCGCCAGAGACCCT | 0.188 |
I10 | TGCAACGACGGGCATTTTG | GAGCTTCTTGATGTAGGCCG | 0.455 |
I14 | GGGGCTCAACATGGACCAAA | GGCATGTTGAAGCTGAGCAC | 0.689 |
RM10048 | CAAGCAGTGATCATACAGCCTTCC | GCCATGGCTGAGAACAGAGAGC | 0.744 |
RM10076 | CTAGCAGCTGTCTGCGACACACG | CCGAGGTGTTATGCCAATCTCTATGG | 1.351 |
表1 定位基因 st11用到的部分重要引物
Table 1 Some important primer pairs used for gene mapping.
分子标记 Marker | 正向引物 Forward primer | 反向引物 Reverse primer | 物理距离a Distance/Mba |
---|---|---|---|
I26 | ATTCAGAAGGTGATGCTCCG | GATATGTCGCCAGAGACCCT | 0.188 |
I10 | TGCAACGACGGGCATTTTG | GAGCTTCTTGATGTAGGCCG | 0.455 |
I14 | GGGGCTCAACATGGACCAAA | GGCATGTTGAAGCTGAGCAC | 0.689 |
RM10048 | CAAGCAGTGATCATACAGCCTTCC | GCCATGGCTGAGAACAGAGAGC | 0.744 |
RM10076 | CTAGCAGCTGTCTGCGACACACG | CCGAGGTGTTATGCCAATCTCTATGG | 1.351 |
图1 野生型WT和突变体 st11不同时期叶色表型 A-苗期; B-分蘖期; C-分蘖期叶片; WT-野生型; s11-突变体。下同。
Fig. 1. Photographs of the representative plants and leaves from the Kitaake (WT) and mutant st11 plants. A, At seedling stage; B, At tillering stage; C, Leaves during tillering stage; WT, Wild type; st11,Mutant. The same as below.
图3 突变体 st11白化条斑性状与潮霉素共分离分析 1-潮霉素阳性单株对照; 2-潮霉素阴性单株对照; 3~24-表型为白条纹的22个F2单株。
Fig. 3. Co-segregation analysis of the white stripe leaf phenotype with the gene hygromycin on the F2 mutant plants derived from the cross of Kitaake× st11. 1, Positive control of hygromycin; 2, Negative control of hygromycin; 3-24, Twenty-two F2 plants with the white stripe leaf phenotype.
组合 Cross | F1 | F2 | X2(3:1) | ||
---|---|---|---|---|---|
总株数 Total no. of plants | 正常植株 No. of normal plants | 突变体植株 No. of white strip plants | |||
st11/Jodan | 正常绿叶 Normal green leaf | 1035 | 791 | 244 | 0.589 |
st11/02428 | 正常绿叶 Normal green leaf | 599 | 453 | 146 | 0.054 |
st11/C418 | 正常绿叶 Normal green leaf | 448 | 343 | 105 | 0.502 |
C418/st11 | 正常绿叶 Normal green leaf | 421 | 324 | 97 | 0.863 |
表2 突变体 st11的遗传分析
Table 2 Genetic analysis of the white stripe leaf phenotype of the mutant st11.
组合 Cross | F1 | F2 | X2(3:1) | ||
---|---|---|---|---|---|
总株数 Total no. of plants | 正常植株 No. of normal plants | 突变体植株 No. of white strip plants | |||
st11/Jodan | 正常绿叶 Normal green leaf | 1035 | 791 | 244 | 0.589 |
st11/02428 | 正常绿叶 Normal green leaf | 599 | 453 | 146 | 0.054 |
st11/C418 | 正常绿叶 Normal green leaf | 448 | 343 | 105 | 0.502 |
C418/st11 | 正常绿叶 Normal green leaf | 421 | 324 | 97 | 0.863 |
图4 标记I10在22个F2白条斑突变单株的分离情况 1~22表示来源于亲本Jodan与 st11构建的F2群体的22个不同单株;0表示亲本Jodan。
Fig. 4. Genotype analysis of the 22 F2 plants with the white stripe leaf phenotype using the indel marker I10. 1-22 represent 22 individual plants derived from the cross of Jodan×Kitaake; 0 represent the parent Jodan.
交换单株号 No. of recombinant plants | 标记 Marker | ||||
---|---|---|---|---|---|
I26 | I10 | I14 | RM10048 | RM10076 | |
46 | 1 | 0 | 0 | 0 | 0 |
51 | 1 | 0 | 0 | 0 | 0 |
84 | 1 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 1 | 1 | 1 |
81 | 0 | 0 | 1 | 1 | 1 |
93 | 0 | 0 | 1 | 1 | 1 |
23 | 0 | 0 | 0 | 0 | 2 |
41 | 0 | 0 | 0 | 0 | 1 |
44 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 1 |
74 | 0 | 0 | 0 | 0 | 1 |
81 | 0 | 0 | 0 | 0 | 1 |
84 | 0 | 0 | 0 | 0 | 1 |
107 | 0 | 0 | 0 | 0 | 1 |
110 | 0 | 0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 | 0 | 1 |
115 | 0 | 0 | 0 | 0 | 1 |
165 | 0 | 0 | 0 | 0 | 1 |
表3 五个重要分子标记在 st11/ Jodan的F2群体中白条纹单株的交换情况
Table 3 Recombinant events of five molecular makers in the plants with white stripe leaf from F2 population of st11/Jodan.
交换单株号 No. of recombinant plants | 标记 Marker | ||||
---|---|---|---|---|---|
I26 | I10 | I14 | RM10048 | RM10076 | |
46 | 1 | 0 | 0 | 0 | 0 |
51 | 1 | 0 | 0 | 0 | 0 |
84 | 1 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 1 | 1 | 1 |
81 | 0 | 0 | 1 | 1 | 1 |
93 | 0 | 0 | 1 | 1 | 1 |
23 | 0 | 0 | 0 | 0 | 2 |
41 | 0 | 0 | 0 | 0 | 1 |
44 | 0 | 0 | 0 | 0 | 1 |
60 | 0 | 0 | 0 | 0 | 1 |
74 | 0 | 0 | 0 | 0 | 1 |
81 | 0 | 0 | 0 | 0 | 1 |
84 | 0 | 0 | 0 | 0 | 1 |
107 | 0 | 0 | 0 | 0 | 1 |
110 | 0 | 0 | 0 | 0 | 1 |
112 | 0 | 0 | 0 | 0 | 1 |
115 | 0 | 0 | 0 | 0 | 1 |
165 | 0 | 0 | 0 | 0 | 1 |
图5 基因 st11在水稻第1染色体上的分子定位 A-利用 st11/Jodan的F2群体构建的st11的分子定位结果; B-利用st11/02428的F2群体构建的st11的分子定位结果; C-结合图A和图B的分子定位结果获得的st11的分子定位。N1-由亲本 st11和Jodan构建的F2群体中白条纹单株; N2-由亲本 st11和02428构建的F2群体中的白条纹单株。
Fig. 5. Molecular mapping of gene st11 on chromosome 1. A, Molecular mapping of st11based on F2 population derived from the cross of st11/Jodan; B, Molecular mapping of st11based on F2 population derived from the cross of st11/02428; C, Molecular mapping of st11based on the results from A and B. N1, Plants with the white stripe leaf phenotype in F2 population derived from the cross of st11/Jodan; N2, plants with the white stripe leaf phenotype in F2 population derived from the cross of st11/02428.
交换单株号 No. of recombinant plants | 引物 Marker | 交换单株号 No. of recombinant plants | 引物 Marker | ||
---|---|---|---|---|---|
I10 | RM10076 | I10 | RM10076 | ||
1 | 0 | 1 | 249 | 0 | 1 |
2 | 0 | 1 | 256 | 0 | 1 |
10 | 0 | 1 | 260 | 0 | 1 |
36 | 0 | 1 | 266 | 0 | 1 |
39 | 0 | 1 | 269 | 0 | 1 |
55 | 0 | 1 | 287 | 0 | 1 |
59 | 0 | 1 | 288 | 1 | 1 |
60 | 0 | 1 | 297 | 0 | 1 |
63 | 1 | 1 | 299 | 0 | 1 |
67 | 0 | 1 | 317 | 0 | 1 |
68 | 1 | 1 | 320 | 0 | 1 |
90 | 0 | 1 | 322 | 0 | 1 |
93 | 0 | 1 | 332 | 0 | 1 |
97 | 0 | 1 | 338 | 0 | 1 |
102 | 0 | 1 | 340 | 0 | 1 |
129 | 0 | 1 | 344 | 0 | 1 |
136 | 0 | 1 | 353 | 0 | 1 |
141 | 0 | 1 | 361 | 0 | 1 |
172 | 0 | 1 | 372 | 0 | 1 |
183 | 0 | 1 | 379 | 0 | 1 |
190 | 0 | 1 | 382 | 0 | 1 |
193 | 0 | 1 | 385 | 0 | 1 |
199 | 0 | 1 | 388 | 0 | 1 |
209 | 0 | 1 | 402 | 0 | 1 |
211 | 0 | 1 | 409 | 0 | 1 |
221 | 0 | 1 | 412 | 0 | 1 |
222 | 1 | 2 | 414 | 0 | 1 |
228 | 0 | 1 | 420 | 0 | 1 |
236 | 0 | 1 | 429 | 0 | 1 |
238 | 0 | 1 | 441 | 0 | 1 |
246 | 0 | 1 | 445 | 0 | 1 |
248 | 0 | 1 | 450 | 0 | 1 |
464 | 0 | 1 |
表4 两个重要分子标记在 st11/ 02428的F2群体中白条纹单株的交换情况
Table 4 Recombinant events of two molecular makers in the plants with white stripe leaf from F2 population of st11/02428.
交换单株号 No. of recombinant plants | 引物 Marker | 交换单株号 No. of recombinant plants | 引物 Marker | ||
---|---|---|---|---|---|
I10 | RM10076 | I10 | RM10076 | ||
1 | 0 | 1 | 249 | 0 | 1 |
2 | 0 | 1 | 256 | 0 | 1 |
10 | 0 | 1 | 260 | 0 | 1 |
36 | 0 | 1 | 266 | 0 | 1 |
39 | 0 | 1 | 269 | 0 | 1 |
55 | 0 | 1 | 287 | 0 | 1 |
59 | 0 | 1 | 288 | 1 | 1 |
60 | 0 | 1 | 297 | 0 | 1 |
63 | 1 | 1 | 299 | 0 | 1 |
67 | 0 | 1 | 317 | 0 | 1 |
68 | 1 | 1 | 320 | 0 | 1 |
90 | 0 | 1 | 322 | 0 | 1 |
93 | 0 | 1 | 332 | 0 | 1 |
97 | 0 | 1 | 338 | 0 | 1 |
102 | 0 | 1 | 340 | 0 | 1 |
129 | 0 | 1 | 344 | 0 | 1 |
136 | 0 | 1 | 353 | 0 | 1 |
141 | 0 | 1 | 361 | 0 | 1 |
172 | 0 | 1 | 372 | 0 | 1 |
183 | 0 | 1 | 379 | 0 | 1 |
190 | 0 | 1 | 382 | 0 | 1 |
193 | 0 | 1 | 385 | 0 | 1 |
199 | 0 | 1 | 388 | 0 | 1 |
209 | 0 | 1 | 402 | 0 | 1 |
211 | 0 | 1 | 409 | 0 | 1 |
221 | 0 | 1 | 412 | 0 | 1 |
222 | 1 | 2 | 414 | 0 | 1 |
228 | 0 | 1 | 420 | 0 | 1 |
236 | 0 | 1 | 429 | 0 | 1 |
238 | 0 | 1 | 441 | 0 | 1 |
246 | 0 | 1 | 445 | 0 | 1 |
248 | 0 | 1 | 450 | 0 | 1 |
464 | 0 | 1 |
[1] | 金怡, 刘合芹, 汪得凯, 等. 一个水稻苗期白条纹叶及抽穗期白穗突变体的鉴定和基因定位. 中国水稻科学, 2011, 25(5): 461-466. |
[2] | 张洪征, 程治军, 万建民, 等. 水稻白化突变体研究进展. 生物技术通报, 2013, 1(11): 1-7. |
[3] | 施勇烽, 魏彦林, 奉保华, 等. 水稻淡绿叶突变体HM14的遗传分析与基因定位. 中国水稻科学, 2013, 27(6): 585-590. |
[4] | Liu W, Fu Y, Hu G, et al.Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.).Planta, 2007, 226(3): 785-795. |
[5] | 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素合成的研究进展. 西北植物学报, 2009, 29(3): 629-636. |
[6] | Jung K H, Hur J, Ryu C H, et al.Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system.Plant Cell Physiol, 2003, 44(5): 463-463. |
[7] | Zhang H, Li J, Yoo J H, et al.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase,a key enzyme for chlorophyll synthesis and chloroplast development.Plant Mol Biol, 2006, 62(3): 325-337. |
[8] | Lee S, Kim J H, Yoo E S, et al.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57(6): 805-818. |
[9] | Wang P, Gao J, Wan C, et al.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.Plant Physiol, 2010, 153(3): 994-1003. |
[10] | Wu Z, Zhang X, He B, et al.A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145(1): 29-40. |
[11] | Park S Y, Yu J W, Park J S, et al.The senescence-induced stay green protein regulates chlorophyll degradation.Plant Cell, 2007, 19(5): 1649-1664. |
[12] | Kusaba M, Ito H, Morita R, et al.Rice NON-YELLOW COLOR COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.Plant Cell, 2007, 19(4): 1362-1375. |
[13] | Sato Y, Morita R, Katsuma S, et al.Two short-chain dehydrogenasereductases, NON-YELLOW COLORING 1 and NYC1-LIKE are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice.Plant J, 2009, 57(1): 120-131. |
[14] | Morita R, Sato Y, Masuda Y, et al.Defect in non-yellow coloring 3, an αβ hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice.Plant J, 2009, 59(6): 940-952. |
[15] | Kusumi K, Sakata C, Nakamura T, et al.A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions.Plant J, 2011, 68(6): 1039-1050. |
[16] | Sugimoto H, Kusumi K, Tozawa Y, et al.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation.Plant Cell Physiol, 2004, 45(8): 985-996. |
[17] | Yoo S C, Cho S H, Sugimoto H, et al.Rice virescent 3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development.Plant Physiol, 2009, 150(1): 388-401. |
[18] | Gothandam K M, Kim E S, Cho H, et al.OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis.Plant Mol Biol, 2005, 58(3): 421-433. |
[19] | Rogers S O, Bendich A J.Extraction of DNA from plant tissues.Plant Mol Biol Manual, 1988, 6(1):1-10. |
[20] | Michelmore R W, Paran I, Kesseli R V.Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations.Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. |
[21] | 杨麟, 罗大刚. 水稻叶色突变体的研究进展. 安徽农业科学, 2013, 41(8): 3341-3342. |
[22] | Nagata N, Tanaka R, Satoh S, et al.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.Plant Cell, 2005, 17(1): 233-240. |
[23] | Maekawa M.Studies oil gen etieal difference between distantly related dee varieties.Memoirs Res Fac Agric Hokk Univ, 1982, 13(2): 146-177. |
[24] | 刘少奎, 张启军, 漆庆明, 等. 水稻白条纹新基因st9(t)的初步定位. 江苏农业学报, 2012, 28(5): 928-923. |
[25] | Nagao S.Genie analysis and linkage relationship of characters in rice.Adv Genet, 1951, 4(1): 181-211. |
[26] | Maekawa M.A new leaf stripe genest-5, its linkage with d2 and the location of gene P in the second linkage group.Rice Genet Newsl, 1988, 5(1): 85-87. |
[27] | Maekawa M, Inukai T, Shinbashi N.A new gene for leaf stripe (st-6) fund in linkage group 3.Rice Genet Newsl, 1990, 7(1): 108-109. |
[28] | 谭振华. 水稻白条纹叶基因OsPPR3的图位克隆及功能分析. 长沙: 湖南大学, 2012. |
[29] | 何颖红, 邹国兴, 饶玉春等. 水稻白条叶突变体(st10)的遗传分析与基因定位. 分子植物育种, 2011, 9(2): 136-142. |
[30] | Su N, Hu M, Wu D, et al.Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.Plant Physiol, 2012, 159(1): 227-238. |
[31] | 曹立勇, 钱前, 朱旭东, 等. 紫叶标记籼型光温敏核不育系中紫S的选育及其配组的杂种优势. 作物学报, 1999, 25(1): 44-49. |
[32] | Oud J S N, Schneiders H, Koo A J, et al. Breeding of transgenic orange Petunia hybrid varieties.Euphytica, 1995, 84(3): 175-181. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||