\[1\]杨连新, 王云霞, 朱建国, 等. 十年水稻FACE研究的产量响应. 生态学报, 2009, 29(3): 14861497.\[2\]杨连新, 王云霞, 朱建国, 等. 开放空气中CO2浓度增高 (FACE) 对水稻生长和发育的影响. 生态学报, 2010, 30 (6): 15731585.\[3\]Wang Y X, Frei M, Song Q L, et al. The impact of atmospheric CO2 concentration enrichment on rice quality. Acta Ecol Sin, 2011, 31: 277282.\[4\]Yang L X,Peng S B. Agronomic avenues to maximize the benefits of rising atmospheric CO2 concentration in the Asian irrigated rice system//Araus J L, Slafer G A. Crop Stress Management and Global Climate Change. CABI Climate Change Series Vol.2. Oxon, UK: CAB, 2011: 3746.\[5\]WHO. Reducing risks, promoting healthy life//World Health Organization. The World Health Report. Geneva, Switzerland, 2002.\[6\]Stein A J. Global impacts of human mineral malnutrition. Plant Soil, 2010, 335: 133154.\[7\]Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 2008, 302: 117.\[8\]Zhao F J, McGrath S P. Biofortification and phytoremediation. Curr Opin Plant Biol, 2009, 12: 373380.\[9\]Seneweera S P, Blakeney A, Milham P, et al. Influence of rising atmospheric CO2 and phosphorus nutrition on the grain yield and quality of rice (Oryza sativa cv. Jarrah). Cereal Chem, 1996, 73(2): 239243.\[10\]Seneweera S P, Conroy J P. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition. Soil Sci Plant Nutr, 1997, 43: 11311136.\[11\]Lieffering M, Kim H Y, Kobayashi K, et al. The impact of elevated CO2 on the elemental concentrations of fieldgrown rice grains. Field Crops Res, 2004, 88(2/3): 279286.\[12\]Yang L X, Wang Y L, Dong G C, et al. The impact of freeair CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res, 2007, 102(2): 128140.\[13\]庞静, 朱建国, 谢祖彬, 等. 自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响. 中国水稻科学, 2005, 19(4): 350354.\[14\]Long S P, Ainswoth E A, Leakey A D B, et al. Food for Thought: LowerThanExpected crop yield stimulation with rising CO2 concentrations. Science, 2006, 312: 19181921.\[15\]Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to freeair CO2 enrichment. Adv Agron, 2002, 77: 293368.\[16\]王云霞, 杨连新, Remy Manderscheid, 等. C4作物FACE (free air CO2 enrichment) 研究进展. 生态学报, 2011, 31 (5): 14501459.\[17\]任思荣, 朱建国, 李辉信, 等. 大气CO2浓度升高对水稻伤流液中矿质元素的影响. 农业环境科学学报 2007,26(5):1849 1853\[18\]Lapteva N A. Colorimetric determination of phytate in unpurified extracts of seeds and the products of their processing. AnalBiochem, 1988, 175: 227230.\[19\]Morris E R, Ellis R. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biol Trace Elem Res, 1989, 19:107117.\[20\]Cakmak I, Pfeiffer W H, McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem, 2010, 87: 1020.\[21\]Cakmak I, Kalayci M, Kaya Y, et al. Biofortification and localization of zinc in wheat grain. J Agric Food Chem, 2010, 58: 90929102.\[22\]Yang L X, Liu H J, Wang Y X, et al. Impact of elevated CO2 concentration on intersubspecific hybrid rice cultivar Liangyoupeijiu under fully open air field conditions. Field Crops Res, 2009, 112: 715.\[23\]Yang L X, Liu H J, Wang Y X, et al. Yield formation of CO2enriched intersubspecific hybrid rice cultivar Liangyoupeijiu under fully openair field condition in a warm subtropical climate. Agric Ecosyst Environ, 2009, 129: 193200.\[24\]Liu H J, Yang L X, Wang Y L, et al. Yield formation of CO2enriched hybrid rice cv. Shanyou 63 under fully openair field conditions. Field Crops Res, 2008, 108: 93100.\[25\]Meenakshi J V, Johnson N, Manyong V M, et al. How costeffective is biofortification in combating micronutrient malnutrition? An exante assessment. Harvest Plus Working Paper 2. International Food Policy Research Institute (IFPRI), Washington, DC, 2007.\[26\]Mabesa R L, Impa S M, Grewal D, et al. Contrasting grainZn response of biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crops Res, 2013, 149: 223233.\[27\]齐义涛, 张庆, 周三妮, 等. 结实期叶面施锌对扬麦16号和扬辐麦2号籽料不同部位锌含量的影响. 农业环境科学学报, 2013, 32 (4): 675680.\[28\]Loennerdal B. Phytic acidtrace element (Zn, Cu, Mn) interactions. Food Sci Technol Int, 2002, 37: 749758.\[29\]Schlemmer U. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res, 2009, 53: 330375.\[30\]王慧, 李茂柏, 张建明, 等. 水稻籽粒不同部位植酸含量及其与稻米品质的相关性. 中国水稻科学, 2009, 23 (2): 215218.\[31\]齐义涛, 周三妮, 张庆, 等. 结实期叶面施锌对小麦籽粒不同部位锌有效性的影响. 农业环境科学学报, 2013, 32(6): 10851091.\[32\]Marschner P. Mineral Nutrition of Higher Plants (3 ed). San Diego, USA: Academic press, 2011: 149.\[33\]冯跃, 王伯伦, 王慧新, 等. 不同施肥水平和种植密度对水稻根部性状的影响. 沈阳农业大学学报, 2007, 8: 467471.\[34\]World Health Organization. Trace element in human nutrition and health. Geneva, 1996.\[35\]Loladze I. Rising atmospheric CO2 and human nutrition: Towards globally imbalanced plant stoichiometry. Trends Ecol Evol, 2002, 17: 457461.\[36\]Zhang Y Q, Sun Y X, Ye Y L, et al. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res, 2012, 125: 17.\[37\]Persson D P, Hansen T H , Laursen K H, et al. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SECICPMS and IPICPMS. Metallomics, 2009, 5: 418426. |