\[1\]Tanaka A, Tanaka R. Chlorophyll metabolism. Curr Opin Plant Biol, 2006, 9(3): 248255.\[2\]Rudiger W. Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry, 1997, 46(7): 11511167.\[3\]Eckhardt U, Grimm B, Hortensteiner S. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol Biol, 2004, 56(1): 114.\[4\]Liu W, Fu Y, Hu G, et al. Identification and fine mapping of a thermosensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta, 2007, 226(3): 785795.\[5\]Nagata N, Tanaka R, Satoh S, et al. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17(1): 233240.\[6\]Jung K H, Hur J, Ryu C H, et al. Characterization of a rice chlorophylldeficient mutant using the TDNA genetrap system. Plant Cell Physiol, 2003, 44(5): 463472.\[7\]Zhang H, Li J, Yoo J H, et al. Rice Chlorina1 and Chlorina9 encode ChlD and ChlI subunits of Mgchelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62(3): 325337.\[8\]Wang P, Gao J, Wan C, et al. Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153(3): 994.\[9\]Wu Z, Zhang X, He B, et al. A chlorophylldeficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145(1): 29.\[10\]Lee S, Kim J H, Yoo E S, et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57(6): 805818.\[11\]Su N, Hu M L, Wu D X, et al. Disruption of a rice pentatricopeptide repeat protein causes a seedlingspecific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012, 159(1): 227238.\[12\]Miyoshi K, Ito Y, Serizawa A, et al. OsHAP3 genes regulate chloroplast biogenesis in rice. Plant J, 2003, 36(4): 532540.\[13\]Kusumi K, Yara A, Mitsui N, et al. Characterization of a rice nuclearencoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol, 2004, 45(9): 11941201.\[14\]Gothandam K M, Kim E S, Cho H J, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005, 58(3): 421433.\[15\]Chi Y H, Moon J C, Park J H, et al. Abnormal chloroplast development and growth inhibition in rice thioredoxin m knockdown plants. Plant Physiol, 2008, 148(2): 808817.\[16\]Alberte R S, Hesketh J D, Hofstra G, et al. Composition and activity of the photosynthetic apparatus in temperaturesensitive mutants of higher plants. Proc Natl Acad Sci USA, 1974, 71(6): 24142418.\[17\]Markwell J P, Danko S J, Bauwe H, et al. A temperaturetensitive thlorophyll bdeficient mutant of sweetclover (Melilotus alba). Plant Physiol, 1986, 81(2): 329334.\[18\]Markwell J, Osterman J C. Occurrence of temperaturesensitive phenotypic plasticity in chlorophylldeficient mutants of Arabidopsis thaliana. Plant Physiol, 1992, 98(1): 392394.\[19\]Galova E, Bohmova B, Sevcovicova A. Analysis of some barley chlorophyll mutants and their response to temperature stress. Photosynthetica, 2000, 38(1): 2935.\[20\]Pasini L, Bruschini S, Bertoli A, et al. Photosynthetic performance of coldsensitive mutants of maize at low temperature. Physiol Plant, 2005, 124(3): 362370.\[21\]Kusumi K, Sakata C, Nakamura T, et al. A plastid protein NUS1 is essential for buildup of the genetic system for early chloroplast development under cold stress conditions. Plant J, 2011, 68(6): 10391050.\[22\]Sugimoto H, Kusumi K, Noguchi K, et al. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007, 52(3): 512527.\[23\]Yoo S C, Cho S H, Sugimoto H, et al. Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009, 150(1): 388401.\[24\]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol, 1987, 148:350382.\[25\]李超, 林冬枝, 董彦君, 等. 一个水稻苗期温敏感白色条斑叶突变体的遗传分析及基因定位. 中国水稻科学, 2010, 24(3): 223227.\[26\]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8(19): 43214325.\[27\]Hirochika H, Guiderdoni E, An G, et al. Rice mutant resources for gene discovery. Plant Mol Biol, 2004, 54(3): 325334.\[28\]Kurata N, Miyoshi K, Nonomura K, et al. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46(1): 4862.\[29\]Iba K, Takamiya K I, Toh Y, et al. Formation of functionally active chloroplasts is determined at a limited stage of leaf development in virescent mutants of rice. Dev Genet, 1991, 12(5): 342348.\[30\]Yatou O, Cheng X Y. Temperature sensitive chlorophyll mutations. Rice Genet Newsl, 1989, 6:131.\[31\]董彦君, 董文其, 张小明, 等. 突变体 Fan5 苗色低温敏感性状的遗传分析. 中国水稻科学, 1995, 9(4): 249250.\[32\]舒庆尧, 刘贵付, 夏英武. 温敏水稻叶色突变体的研究. 核农学报, 1996, 10(1): 610.\[33\]Kusumi K, Mizutani A, Nishimura M, et al. A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice. Plant J, 1997, 12(6): 12411250.\[34\]Sugimoto H, Kusumi K, Tozawa Y, et al. The virescent2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol, 2004, 45(8): 985996.\[35\]Hajdukiewicz P T, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. Embo J, 1997, 16(13): 40414048.\[36\]Maliga P. Two plastid RNA polymerases of higher plants: An evolving story. Trends Plant Sci, 1998, 3:46\[37\]Krause K, Maier R, Kofer W, et al. Disruption of plastidencoded RNA polymerase genes in tobacco: Expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gene Genet, 2000, 263(6): 10221030.\[38\]Legen J, Kemp S, Krause K, et al. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wildtype and PEPdeficient transcription machineries. Plant J, 2002, 31(2): 171188.\[39\]Serino G, Maliga P. RNA Polymerase subunits encoded by the plastid rpogenes are not shared with the nucleusencoded plastid enzyme. Plant Physiol, 1998, 117(4): 11651170.\[40\]Pfalz J, Liere K, Kandlbinder A, et al. pTAC2, 6, and12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell Online, 2006, 18(1): 176197.\[41\]Hajdukiewicz P T, Allison L A, Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. Embo J, 1997, 16(13): 40414048.\[42\]Silhavy D, Maliga P. Mapping of promoters for the nucleusencoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet, 1998, 33(5): 340344.\[43\]Liere K, Maliga P. In vitro characterization of the tobacco rpoB promoter reveals a core sequence motif conserved between phagetype plastid and plant mitochondrial promoters. Embo J, 1999, 18(1): 249257.\[44\]Wu H, Zhang L X. The PPR protein PDM1 is involved in the processing of rpoA premRNA in Arabidopsis thaliana. Chin Sci Bull, 2010, 55(30): 34853489.\[45\]Zhou W B, Cheng Y X, Yap A, et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J, 2009, 58(1): 8296.\[46\]Ishizaki Y, Tsunoyama Y, Hatano K, et al. A nuclearencoded sigma factor, Arabidopsis SIG6, recognizes sigma70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J, 2005, 42(2): 133144. |