中国水稻科学 ›› 2014, Vol. 28 ›› Issue (1): 103-110.DOI: 10.3969/j.issn.1001-7216.2014.01.015
• 综述与专论 • 上一篇
陈婷婷,杨建昌*
收稿日期:
2013-04-09
修回日期:
2013-05-27
出版日期:
2014-01-10
发布日期:
2014-01-10
通讯作者:
杨建昌*
基金资助:
国家自然科学基金国际重大合作项目(31061140457);国家自然科学基金资助项目(31271641, 31071360)。
CHEN Tingting, YANG Jianchang*
Received:
2013-04-09
Revised:
2013-05-27
Online:
2014-01-10
Published:
2014-01-10
Contact:
YANG Jianchang*
摘要: 水资源匮乏威胁水稻生产的可持续发展和粮食安全。为了应对水资源紧缺和增加粮食产量,农业科学家开发了各种节水灌溉技术和生产体系。本文综述了当前移栽水稻生产上主要应用的节水灌溉技术并从水稻生长、激素、蔗糖淀粉代谢途径关键酶活性等方面阐述了其生理生化机制,提出水稻高产高效节水灌溉技术存在的问题与研究展望。
中图分类号:
陈婷婷,杨建昌*. 移栽水稻高产高效节水灌溉技术的生理生化机理研究进展[J]. 中国水稻科学, 2014, 28(1): 103-110.
CHEN Tingting, YANG Jianchang*. Research Advances in the Physiological and Biochemical Mechanism in Watersaving Irrigation Techniques for High Yield and High Efficiency of Transplanted Rice[J]. Chinese Journal of Rice Science, 2014, 28(1): 103-110.
\[1\]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plan, 2003, 34: 259270.\[2\]Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 4360.\[3\]Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001, 49: 1130.\[4\]Belder P, Spiertz J H J, Bouman B A M, et al. Nitrogen economy and water productivity of lowland rice under watersaving irrigation. Field Crops Res, 2005, 93: 169185.\[5\]Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semiarid tropical environment. Field Crops Res, 1997, 52: 231248\[6\]Singandhupe R B, Rajput R K. Response of rice to irrigationschedule and nitrogen in sodic soil. Indian J Agron, 1987, 32: 130133.\[7\]Ramasamy S, Berge H F M T, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application.Field Crops Res, 1997, 51: 6582.\[8\]Ockerby S E, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215226.\[9\]Bouman B A M, Peng S, Castaňeda A R, et al. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag, 2005, 74: 87105.\[10\]Liu X J, Wang J C, Lu S H, et al. Effects of nonflooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in ricewheat cropping systems. Field Crops Res, 2003, 83: 297311.\[11\]Tao H, Brueck H, Dittert K, et al. Growth and yield formation for rice (Oryza sativa L.) in the watersaving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 112.\[12\]Zhang J, Sui X, Li B, et al. An improved wateruse efficiency for winter wheat grown under reduced irrigation. Field Crops Res, 1998, 59: 9198.\[13\]Kang S, Shi W, Zhang J. An improved wateruse efficiency for maize grown under regulated deficit irrigation. Field Crops Res, 2000, 67: 207214.\[14\]Li F S, Yu J M, Nong M L, et al. Partial rootzone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agric Water Manag, 2010, 97: 231239.\[15\]Graterol Y E, Eisenhauer D E, Elmore R W. Alternatefurrow irrigation for soybean production. Agric Water Manag, 1993, 24: 133145.\[16\]Zhang J, Yang J. Crop yield and water use efficiency// Bacon M A. Water Use Efficiency in Plant Biology. Oxford, UK: Blackwell Publishing, 2004: 189218.\[17\]程建平. 水稻节水栽培生理生态基础及节水灌溉技术研究. 武汉: 华中农业大学, 2007: 1418.\[18\]程大旺. 水稻节水高效栽培的生理生态效应及对产量和品质的影响. 杭州: 浙江大学, 2001: 1013.\[19\]Li Y H,Barker R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ, 2004, 2: 187193.\[20\]Talpur M A, Ji C Y, Junejo S A, et al. A review on the enhancement of rice production in paddy field with minimum input of water. Afr J Agric Res, 2011, 6 (33): 67766779. \[21\]茆智. 水稻节水灌溉及其对环境的影响. 中国工程科学, 2002, 7: 816.\[22\]Singh S, Ladha J K, Gupta R K, et al. Weed management in aerobic rice systems under varying establishment methods. Crop Prot, 2008, 27: 660671.\[23\]Lampayan R M, Bouman B A M, de Dios J L, et al. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Res, 2010, 116: 165174.\[24\]Lafitte R H, Courtois B, Arraudeau M. Genetic improvement of rice in aerobic systems: Progress from yield to genes. Field Crops Res, 2002, 75: 171190.\[25\]Pinheiro B D S, Castro E D M D, Guimares C M. Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res, 2006, 97: 3442. \[26\]Saito K, Linquist B, Atlin G N. Response of traditional and improved rice cultivars to N and P fertilizer in northern Laos. Field Crops Res, 2006, 96: 216223.\[27\]Atlin G N, Lafitte H R, Tao D, et al. Developing rice cultivars for highfertility upland systems in the Asian tropics. Field Crops Res, 2006, 97: 4352.\[28\]Nie L X, Peng S B, Chen M X, et al. Aerobic rice for watersaving agriculture. Agron Sustain Dev, 2012, 32: 411418.\[29\]Surridge C. The rice squad. Nature, 2002, 416: 576578.\[30\]Uphoff N, Kassam A. A critical assessment of a desk study comparing crop production systems: The example of the ‘system of rice intensification’ versus ‘best management practice’. Field Crops Res, 2008, 108: 109114.\[31\]Uphoff N, Kassam A. Case Study: System of rice intensification, final report agricultural technologies for developing countries STOA project ‘Agricultural technologies for developing countries’. Rome: FAO, 2009: 165. \[32\]Stoop W A, Uphoff N, Kassam A. A review of agricultural research raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resourcepoor farmers. Agric Syst, 2002, 71: 249274.\[33\]Uphoff N, Randriamiharisoa. Reducing water use in irrigated rice production with the Madagascar system of rice intensification (SRI)// Bouman B A M. Waterwise Rice Production. Los Banos, Philippines: International Rice Research Institute, 2002: 151166.\[34\]Rafaralahy S. An NGO perspective on SRI and its origins in Madagascar//Uphoff N. Assessment of the System for Rice Intensification (SRI). New York: Cornell International Institute of Food Agriculture and Development, 2002: 1722. \[35\]Sheehy J E, Peng S, Dobermann A, et al. Fantastic yields in the systems of rice intensification: Fact or fallacy? Field Crops Res, 2004, 88: 18. \[36\]Sinclair T R, Cassman K G. Agronomic UFOs. Field Crops Res, 2004, 88: 910.\[37\]Dobermann A. A critical assessment of the system of rice intensification (SRI). Agric Syst, 2004, 79: 261281.\[38\]Barrett C B , Moser C M, McHugh O V, et al. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. Am J Agric Econ, 2004, 86: 869888.\[39\]Latif M A, Islam M R, Ali M Y, et al. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Res, 2005, 93: 281292.\[40\]Tsujimoto Y, Horie T, Randriamihary H, et al. Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agric Syst, 2009, 100: 6171.\[41\]Horie T, Shiraiwa T, Homma K, et al. Can yields of lowland rice resume the increases that showed in the 1980s? Plant Prod Sci, 2005, 8: 259274.\[42\]Belder P, Spiertz J H J, Bouman B A M, et al. Nitrogen economy and water productivity of lowland rice under watersaving irrigation. Field Crops Res, 2005, 93: 169185.\[43\]梁永超, 胡锋, 杨茂成, 等. 水稻覆膜旱作高产节水机理研究. 中国农业科学, 1999, 32(1): 2632.\[44\]Fan M S, Liu X J, Jiang R F, et al. Crop yields, internal nutrient efficiency, and changes in soil properties in ricewheat rotations under nonflooded mulching cultivation. Plant Soil, 2005, 277: 265276.\[45\]Lu X, Wu L, Pang L, et al. Effects of plastic film mulching cultivation under nonflooded condition on rice quality. J Sci Food Agric, 2007, 87: 334339.\[46\]黄义德, 张自立, 魏凤珍, 等. 水稻覆膜旱作的生态生理效应. 应用生态学报, 1999, 10(3): 305308.\[47\]刘天学, 纪秀娥. 焚烧秸秆对土壤有机质和微生物的影响研究. 土壤, 2003, 35(4): 347348.\[48\]Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Sci Plant Nutr, 1997, 43: 849854.\[49\]Fan M S, Lu S H, Jiang R F, et al. Longterm nonflooded mulching cultivation influences rice productivity and soil organic carbon. Soil Use Manag, 2012, 28(4): 544550.\[50\]Liu X J, Ai Y W, Zhang F S, et al. Crop production, nitrogen recovery and water use efficiency in ricewheat rotations as affected by nonflooded mulching cultivation (NFMC). Nutr Cycl Agroecosys, 2005, 71: 289299.\[51\]Tao H, Brueck H, Dittert K, et al. Growth and yield formation for rice (Oryza sativa L.) in the watersaving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 112.\[52\]Xu G W, Zhang Z C, Zhang J H, et al. Much improved water use efficiency of rice under nonflooded mulching cultivation. J Integ Plant Biol, 2007, 49: 15271534.\[53\]Zhang Z, Xue Y, Wang Z, et al. The relationship of grain filling with abscisic acid and ethylene under nonflooded mulching cultivation. J Agric Sci, 2009, 147: 423436.\[54\]Zhang Z C, Zhang S F, Yang J C, et al. Yield, grain quality and water use efficiency of rice under nonflooded mulching cultivation. Field Crops Res, 2008, 108: 7181.\[55\]Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61(12): 31773189.\[56\]Hunter M N, Jabrun P L M, Byth D E. Response of nine soybean line to soil moisture conditions close to saturation. Aust J Exp Agric Anim Husb, 1980, 20: 339345.\[57\]Troedson R J, Lawn R J, Byth D E, et al. Saturated soil culture in innovated water management option for soybean in the tropics and subtropics//Shanmugasundaran S. Soybean in Tropical and Subtropical System. Taiwan, Shanhua: AVRDC, 1985: 171180.\[58\]Weligamage P, Godaliyadda G G A, Jinapala K, et al. Proceedings of the national conference on water, food security and climate change in Sri Lanka, BMICH: Ⅰ. Irrigation for food securiy. Colombo, Sri Lanka: International Water Management Institute, 2009: 172182.\[59\]Ghulamahdi M, Melati M, Sagala D. Production of soybean varieties under saturated soil culture on tidal swamps. J Agron Indon, 2009, 37(3): 226232.\[60\]Tuong T P, Bouman B A M, Mortimer M. More rice, less waterintegrated approaches for increasing water productivity in irrigated ricebased systems in Asia. Plant Prod Sci, 2005, 8: 231241.\[61\]Yang J, Liu K, Wang Z, et al. Watersaving and highyielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integ Plant Biol, 2007, 49: 14451454.\[62\]Zhang H, Zhang S, Zhang J, et al. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726734.\[63\]Bouman B, Humphreys E, Tuong T, et al. Rice and water. Adv Agron, 2007, 92: 187237.\[64\]Tan X Z, Shao D G, Liu H H, et al. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ, 2013, 11: 381395.\[65\]Garg K K, Das B S, Safeeq M, et al. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric Water Manag, 2009, 96(12): 17051714.\[66\]Gun Won J, Soo Choi J, Phil Lee S, et al. Water saving by shallow intermittent irrigation and growth of rice. Plant Prod Sci, 2005, 8(4): 487492.\[67\]Cabangon R J, Castillo E G, Lu G, et al. Impact of alternate wetting and drying irrigation on rice growth and resourceuse efficiency// Barker R, Loeve R, Li Y H. Watersaving Irrigation for Rice: Proceedings of an International Workshop on Water Saving Irrigation in Paddy RiceHeld in Colombo Sri Lanka: International water management institute, 2001: 5579. \[68\]张明炷, 李远华, 崔远来, 等. 非充分灌溉条件下水稻生长发育及生理机制研究. 灌溉排水, 1994, 13(4): 610.\[69\]贾宏伟, 王晓红, 陈来华. 水稻节水灌溉研究综述. 浙江水利科技, 2007, 151(3): 1925.\[70\]张荣萍, 马均, 王贺正, 等. 不同灌水方式对水稻生育特征及水分利用率的影响. 中国农学通报, 2005, 21(9): 144150.\[71\]王霞, 侯平, 尹林克. 植物对干旱胁迫的适应机理. 干旱区研究, 2001, 18(2): 4246.\[72\]陈晓远, 凌木生, 高志红. 水分胁迫对水稻叶片可溶性糖和游离脯氨酸含量的影响. 河南农业科学, 2006(12): 2630.\[73\]张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 杂交水稻, 2009, 24(3): 49884998.\[74\]徐芬芬, 曾晓春, 石庆华. 干湿交替灌溉方式下水稻节水增产机理研究. 中国农学通报, 2009, 24(3): 7275.\[75\]Argueso C T, Ferreira F J, Kieber J J. Enviromental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ, 2009, 32: 11471160.\[76\]Zhang H, Tan G, Yang L, et al. Hormones in the grains and roots in relation to postanthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol Biochem, 2009, 47: 195204.\[77\]Yang J, Zhang J, Huang Z,et al. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann BotLondon, 2002, 90: 369377.\[78\]Yang J, Zhang J, Wang Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315323.\[79\]Yang J, Zhang J, Wang Z, et al. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ, 2003, 26: 16211631.\[80\]Yoshida S. Physiological aspects of grain yield. Ann Rev Plant Physiol, 1972, 23: 437464.\[81\]Murata Y, Matsushima S. Rice// Evans L T. Crop Physiology. Cambridge: Cambridge University Press, 1975: 7599.\[82\]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 1520.\[83\]Yang J C, Zhang J H, Wang Z,et al. Activities of enzymes involved in sourcetostarch metabolism in rice grains subjected to water stress during filling. Field Crops Res,2003, 81: 6981.\[84\]Jiang D, Cao W X, Dai T B, et al. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regul, 2003, 41: 247257.\[85\]Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrosestarch conversion in developing endosperm of rice and their association with grain filling in extraheavy panicle types. Plant Prod Sci, 2007, 10: 442450.\[86\]杨建昌, 袁莉民, 唐成, 等. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响. 作物学报, 2005, 31(8): 10521057.\[87\]Zhang H, Li H W, Yuan L M, et al. Postanthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrosetostarch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63(1): 215227.\[88\]喻娟娟, 戴绍军. 植物蛋白质组学研究若干重要进展. 植物学报, 2009, 44(4): 410425.\[89\]Raharjo T J, Widjaja I, Roytrakul S, et al. Comparative proteomics of Cannabis sativa plant tissues. J Biol Technol, 2004, 15(2): 97106.\[90\]Agrawal G K, Hajduch M, Graham K, et al. Indepth investigation of the soybean seedfilling proteome and comparison with a parallel study of rapeseed. Plant Physiol, 2008, 148: 504518.\[91\]Lee D G, Ahsan N, Lee S H, et al. An approach to identify coldinduced lowabundant proteins in rice leaf. C R Biol, 2007, 330(3): 215225.\[92\]Liu S W, Zhang L, Jiang J Y, et al. Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci Total Environ, 2012, 426: 166171.\[93\]Yang S H, Peng S Z, Xu J Z, et al. Methane and nitrous oxide emissions from paddy field as affected by watersaving irrigation. Physics Chem Earth, 2012,(53/54): 3037.\[94\]Katayanagi N, Furukawa Y, Fumoto T, et al. Validation of the DNDCRice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr, 2012, 58: 360372. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||