\[1\]李鹏, 葛滢, 吴龙华, 等. 两种籽粒镉含量不同水稻的镉吸收转运及其生理效应差异初探. 中国水稻科学, 2011, 25(3): 291296.\[2\]邓湘雄, 王慧中, 徐祥彬, 等. 水稻镉耐性研究进展. 杭州师范大学学报: 自然科学版, 2009, 8(6): 457462.\[3\]Grant C A, Clarke J M, Duguid S, et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci Total Environ, 2008, 390(2/3): 301310.\[4\]鄂志国, 郑传举, 王磊. 中国野生稻资源及其在水稻抗性育种上的应用. 中国稻米, 2008(4): 37.\[5\]章秀福, 王丹英, 储开富, 等. 镉胁迫下水稻SOD活性和MDA含量的变化及其基因型差异. 中国水稻科学, 2006, 20(2): 194198.\[6\]何俊瑜, 任艳芳, 严玉萍, 等. 镉胁迫对水稻幼苗生长和根尖细胞分裂的影响. 土壤学报, 2010, 47(1): 138144.\[7\]陈娟. 镉对水稻植株生长和叶片生理活性的影响. 种子, 2009, 28(6): 3842.\[8\]黄冬芬, 王志琴, 刘立军, 等. 镉对水稻产量和品质的影响. 热带作物学报, 2010, 31(1): 1924.\[9\]刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理. 应用生态学报, 2010, 21(4): 908914.\[10\]范中亮, 季辉, 杨菲, 等. 不同土壤类型下杂交籼稻地上部器官对重金属镉和铅的富集特征. 中国水稻科学, 2010, 24(2): 183188.\[11\]冯文强, 涂仕华, 秦鱼生, 等. 水稻不同基因型对铅镉吸收能力差异的研究. 农业环境科学学报, 2008, 27(2): 447451.\[12\]Ueno D, Kono I, Yokosho K, et al. A major quantitative trait locus controlling cadmium translocation in rice (Oryza sativa). New Phytol, 2009, 182(3): 644653.\[13\]He J Y, Zhu C, Ren Y F, et al. Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci, 2006, 169(5): 711716.\[14\]Liu J G, Zhu Q S, Zhang Z J, et al. Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric, 2005, 85(1): 147153.\[15\]Arao T, Ae N. Genotypic variations in cadmium levels of rice grain. Soil Sci & Plant Nutr, 2003, 49(4): 473479.\[16\]Ishikawa S, Ae N, Yano M. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol, 2005, 168(2): 345350.\[17\]Kashiwagi T, Shindoh K, Hirotsu N, et al. Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol, 2009, 9: 8.\[18\]林辉锋, 熊君, 贾小丽, 等. 水稻苗期耐Cd胁迫的QTL定位分析. 中国农学通报, 2009, 25(9): 2631.\[19\]Xue D W, Chen M C, Zhang G P. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica, 2009, 165(3): 587596.\[20\]Ueno D, Koyama E, Kono I, et al. Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice. Plant & Cell Physiol, 2009, 50(12): 22232233.\[21\]Ishikawa S, Abe T, Kuramata M, et al. A major quantitative trait locus for increasing cadmiumspecific concentration in rice grain is located on the short arm of chromosome 7. J Exp Bot, 2010, 61(3): 923934.\[22\]Tezuka K, Miyadate H, Katou K, et al. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar ChoKoKoku. Theor Appl Genet, 2010, 120(6): 11751182.\[23\]Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 2010, 107(38): 1650016505.\[24\]Miyadate H, Adachi S, Hiraizumi A, et al. OsHMA3, a P1Btype of ATPase affects roottoshoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol, 2011, 189(1): 190199.\[25\]Ueno D, Koyama E,Yamaji N, et al. Physiological, genetic, and molecular characterization of a highCdaccumulating rice cultivar, Jarjan. J Exp Bot, 2011, 62(7): 22652272.\[26\]王芳, 丁杉, 张春华, 等. 不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布. 农业环境科学学报, 2010, 29(4): 625629.\[27\]Adamis P D B, Gomes D S, Pinto M L C C, et al. The role of glutathione transferases in cadmium stress. Toxicol Lett, 2004, 154(1/2): 8188.\[28\]Lin Y L, Chao Y Y, Kao C H. Exposure of rice seedlings to heat shock protects against subsequent Cdinduced decrease in glutamine synthetase activity and increase in specific protease activity in leave. J Plant Physiol, 2010, 167(13): 10611065.\[29\]Shah K, Kumar R G, Verma S, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci, 2001, 161(6): 11351144.\[30\]OgawaI, Nakanishi H, Mori S, et al. Time course analysis of gene regulation under cadmium stress in rice. Plant & Soil, 2009, 325(1/2): 97108.\[31\]Lee K, Bae D W, Kim S H, et al. Comparative proteomic analysis of the shortterm responses of rice roots and leaves to cadmium. J Plant Physiol, 2010, 167(3): 161168.\[32\]Williams L E, Mills R F. P1BATPases: An ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci, 2005, 10(10): 491502.\[33\]Takahashi R, Ishimaru Y, Shimo H, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2. Plant, Cell & Environ, 2012, 35(11): 19481957.\[34\]SatohNagasawa N, Mori M, Nakazawa N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant & Cell Physiol, 2012, 53(1): 213224.\[35\]Yamaji N, Xia J, MitaniUeno N, et al. Preferential delivery of Zn to developing tissues in rice is mediated by a Ptype ATPases, OsHMA2. Plant Physiol, 162(2): 927939.\[36\]Nocito FF, Lancilli C, Dendena B, et al. Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant, Cell & Environ, 2011, 34(6): 9941008.\[37\]Lee S, Kim Y Y, Lee Y, et al. Rice P1Btype heavymetal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol, 2007, 145(3): 831842.\[38\]Takahashi R, Ishimaru Y, Nakanishi H, et al. Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal & Behav, 2011, 6(11): 18131816.\[39\]Belouchi A, Kwan T, Gros P. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol, 1997, 33(6): 10851092.\[40\]Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot, 2011, 62(14): 48434850.\[41\]Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep, 2012, 2: 286.\[42\]Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell, 2012, 24(5): 21552167.\[43\]Ishikawa S, Ishimaru Y, Igura M, et al. Ionbeam irradiation, gene identification, and markerassisted breeding in the development of lowcadmium rice. Proc Natl Acad Sci USA, 2012, 109(47): 1916619171.\[44\]刘宝秀, 袁连玉, 王晶, 等. 水稻金属耐受蛋白基因OsMTP2生物信息学及表达分析. 热带亚热带植物学报, 2012, 20(1): 812.\[45\]Yuan L Y, Yang S G, Liu B X, et al. Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep, 2012, 31(1): 6779.\[46\]徐杏, 邱杰, 徐扬, 等. 水稻ABCB转运蛋白基因的分子进化和表达分析. 中国水稻科学, 2012, 26(2): 127136.\[47\]Oda K, Otani M, Uraguchi S, et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci, Biotechnol, & Biochem, 2011, 75(6): 12111213.\[48\]Moons A. Ospdr9, which encodes a PDRtype ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett, 2003, 553(3): 370376.\[49\]Uraguchi S, Kamiya T, Sakamoto T, et al. Lowaffinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA, 2011, 108(52): 2095920964.\[50\]Shimo H, Ishimaru Y, An G, et al. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot, 2011, 62(15): 57275734.\[51\]Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci & Plant Nutr, 2006, 52(4): 464469.\[52\]Lee S, An G. Overexpression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell & Environ, 2009, 32(4): 408416.\[53\]董善辉, 李军, 赵梅. 磷对镉污染土壤中水稻吸收积累镉的影响. 东北农业大学学报, 2010, 41(9): 3942.\[54\]赵颖, 李军. 硅对水稻吸收镉的影响. 东北农业大学学报, 2010, 41(3): 5964.\[55\]甲卡拉铁, 喻华, 冯文强, 等. 氮肥品种和用量对水稻产量和镉吸收的影响研究. 中国生态农业学报, 2010, 18(2): 281285.\[56\]张丽娜, 宗良纲, 付世景, 等. 水分管理方式对水稻在Cd污染土壤上生长及其吸收Cd的影响. 安全与环境学报, 2006, 6(5): 4952.\[57\]刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理. 应用生态学报, 2010, 21(4): 908914. |