\[1\]魏祥进, 徐俊锋, 江玲, 等. 我国水稻主栽品种抽穗期多样性的遗传分析. 作物学报, 2012, 38(1): 1022.\[2\]Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol, 2010, 14: 18.\[3\]GRAMENE(2013). GRAMENE Database. \[2013310\] http: //www. gramene. org/.\[4\]Yamamoto T, Kuboki Y, Lin S Y, et al. Fine mapping of quantitative trait loci Hd1, Hd2 and Hd3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 3744.\[5\]Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 24732483.\[6\]Izawa T, Oikawa T, Tokutomi S, et al. Phytochromes confer the photoperiodic control of flowering in rice (a shortday plant). Plant J, 2000, 22: 391399.\[7\]Lim J, Moon Y H, An G, et al. Two rice MADS domain proteins interact with OsMADS1. Plant Mol Biol, 2000, 44: 513527.\[8\]Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 79227927.\[9\]Monna L, Lin H, Kojima S, et al. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet, 2002, 104: 772778.\[10\]Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under shortday conditions. Plant Cell Physiol, 2002, 43: 10961105.\[11\]Lin H, Ashikari M, Yamanouchi U, et al. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breeding Sci, 2002, 52: 3541.\[12\]Lin H, Liang Z W, Sasaki T, et al. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding Sci, 2003, 53: 5159.\[13\]Thomson M J, Tai T H, McClung A M, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107: 479493.\[14\]Hayama R, Yokoi S, Tamaki S, et al. Adaptation of photoperiodic control pathways produces shortday flowering in rice. Nature, 2003, 422: 719722.\[15\]Takeuchi Y, Lin S Y, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet, 2003, 107: 11741180.\[16\]Lee S, Kim J, Han J J, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUSLIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38: 754764.\[17\]Furutani I, Sukegawa S, Kyozuka J. Genomewide analysis of spatial and temporal gene expression in rice panicle development. Plant J, 2006, 46: 503511.\[18\]Kim S L, Lee S, Kim H J, et al. OsMADS51 is a shortday flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol, 2007, 145: 14841494.\[19\]Matsubara K, Kono I, Hori K, et al. Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet, 2008, 117: 935945.\[20\]Matsubara K, Yamanouchi U, Wang Z X, et al. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by upregulating Ehd1. Plant Physiol, 2008, 148: 14251435.\[21\]Komiya R, Ikegami A, Tamaki S, et al. Hd3a and RFT1 are essential for flowering in rice. Development, 2008, 135: 767774.\[22\]Rao N N, Prasad K, Kumar P R, et al. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA, 2008, 105: 36463651.\[23\]Xue W Y, Xing Y Z, Weng X Y, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761767.\[24\]Kim S K, Yun C H, Lee J H, et al. OsCO3, a CONSTANSLIKE gene, controls flowering by negatively regulating the expression of FTlike genes under SD conditions in rice. Planta, 2008. 228: 355365.\[25\]Andres F, Galbraith D W, Talon M, et al. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol, 2009, 151: 681690.\[26\]Ryu C H, Lee S, Cho L H, et al. OsMADS50and OsMADS56 function antagonistically in regulating long day (LD)dependent flowering in rice. Plant Cell Environ, 2009, 32: 14121427.\[27\]Li D J, Yang C H, Li X B, et al. Functional characterization of rice OsDof12. Planta, 2009, 229: 11591169.\[28\]Wei X J, Xu J F, Guo H N, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153: 17471758.\[29\]Yan W H, Wang P, Chen H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2010, 4: 319330.\[30\]Maas L F, McClung A, McCouch S. Dissection of a QTL reveals an adaptive, interacting gene complex associated with transgressive variation for flowering time in rice. Theor Appl Genet, 2010, 120: 895908.\[31\]Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signaling time and plant architecture. EMBO J, 2010, 29: 19161927.\[32\]郭梁, 张振华, 庄杰云. 水稻抽穗期QTL及其与产量性状遗传控制的关系. 中国水稻科学, 2012, 26(2): 235245.\[33\]张焦平, 江良荣, 黄建勋, 等. 水稻抽穗期上位效应和QE互作效应的分析. 分子植物育种, 2006, 4(3): 351357.\[34\]You A, Lu X, Jin H, et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics, 2006, 172: 12871300.\[35\]邢永忠, 徐才国, 华金平, 等. 水稻株高和抽穗期基因的定位和分离. 植物学报, 2001, 43(7): 721726.\[36\]郭龙彪, 罗利军, 邢永忠, 等. 水稻重要农艺性状的两年QTL剖析. 中国水稻科学, 2003, 17(3): 211218.\[37\]Yu S B, Li J X, Xu C G, et a1. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619625.\[38\]张玉山, 吴薇, 徐才国. 利用两种方法构建的近等基因系对水稻两个多效区段遗传效应进行评价. 遗传, 2008, 30(6): 781787.\[39\]刘文俊, 王令强, 何予卿. 利用2个相关群体定位和比较水稻株高与抽穗期QTL. 华中农业大学学报, 2007, 4(2): 161166.\[40\]张振华, 郭梁, 朱玉君, 等. 籼稻不同定位群体抽穗期和株高的QTL比较研究. 中国农业科学, 2011, 44(15): 30693092.\[41\]Cao L Y, Wu J L, Fan Y Y, et a1. QTL analysis for heading date and yield traits using recombinant inbred lines of indica rice grown in different cropping seasons. Plant Breeding, 2010, 129: 676682.\[42\]中华人民共和国农业部. 中国农业年鉴2010. 北京: 中国农业出版社, 2011.\[43\]陈立云, 唐文邦, 刘国华, 等. 高产两系杂交早稻新组合陆两优996的选育. 杂交水稻, 2006, 21(2): 2426.\[44\]Saghai Maroof M A, Biyashev R M, Yang G P, et al. Extraordinarily polymorphic microsatellite DNA in barley: Species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994, 91(12): 54665470.\[45\]Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L. ). Theor Appl Genet, 2000, 100: 697712.\[46\]McCouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199207.\[47\]International Rice Genome Sequencing Project. The mapbased of the rice genome. Nature, 2005, 436: 793800.\[48\]Jeremy D E, Jaroslav J, Megan T S, et al. Development and evaluation of a highthroughput, lowcost genotyping platform based on oligonucleotide microarrays in rice. Plant Met, 2008, 4: 13.\[49\]Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241: 225235.\[50\]Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genomewide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95: 553567.\[51\]Lincoln S, Daley M, Lander E. Constructing genetic maps with MAPMAKER/EXP 3. 0, 3rd ed. Whitehead Institute Technical Report, Cambridge, 1992.\[52\]Wang S C, Basten C J, Gaffney P, et al. Windows QTL Cartographer 2. 0 User Manual. Bioinformatics Research Center. North Carolina State University, Raleigh, USA, 2007.\[53\]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963971.\[54\]盘毅, 罗丽华, 邓化冰, 等. 水稻开花期高温胁迫下的花粉育性QTL定位. 中国水稻科学, 2011, 25(1): 99102.\[55\]张永生, 刘喜, 江玲, 等. 利用南京11×越光RIL群体进行抽穗期QTL定位分析. 江苏农业学报, 2009, 25(1): 612.\[56\]袁爱平, 曹立勇, 庄杰云, 等. 水稻株高、抽穗期和有效穗数的QTL与环境的互作分析. 遗传学报, 2003, 30(10): 899906.\[57\]谭禄宾, 张培江, 付永彩, 等. 云南元江普通野生稻株高和抽穗期QTL定位研究. 遗传学报, 2004, 31(10): 11231129.\[58\]Zou J H, Pan X B, Chen Z X, et al. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101:569573.\[59\]Nagata K, Shimizu H, Terao T. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (Oryza sativa L.) and their effects on grain filling. Breeding Sci, 2002, 52: 275283.\[60\]冯跃, 翟荣荣, 曹立勇, 等. 不同施氮水平下水稻株高与抽穗期的QTL比较分析. 作物学报, 2011, 7(9): 15251534. |