\[1\]Vance C P,UhdeStone C, Allan D L. Phosphorus acquisition and uset critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003, 157: 423447. \[2\]李永夫. 水稻适应低P胁迫的营养生理机理研究\[D\]. 杭州: 浙江大学,2006: 3235. \[3\]Svistoonoff S,Creff A,Reymond M,et al. Root tip contact with lowphosphate media reprograms plant root architecture. Nat Genet, 2007, 39: 792796. \[4\]SánchezCalderón L, LópezBucio J, ChacónLópez A, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol, 2005, 46: 174184. \[5\]李德华, 向春雷, 姜益泉, 等. 低P胁迫下不同水稻品种根系生理特性的研究. 华中农业大学学报, 2006, 25(6): 626629. \[6\]李锋, 李木英, 潘晓华, 等. 不同水稻品种幼苗适应低P胁迫的根系生理生化特性. 中国水稻科学, 2004, 18(1): 4852. \[7\]Rubio V, Bustos R, Irigoyen M L, et al. Plant hormones and nutrient signalling. Plant Mol Biol, 2009, 69: 361373. \[8\]Song W, Makeen K, Wang D, et al. Nitrate supply affects root growth differentially in two rice cultivars differing in nitrogen use efficiency. Plant soil, 2011, 343: 357368. \[9\]Trolove S N, Hedley M J, Kirk G J, et al. Progress in selected areas of rhizosphere research on P acquisition. Aust J Soil Res, 2003, 41(3): 471499. \[10\]郭玉春. 不同基因型水稻对低P胁迫的响应及其分子机制研究. 福州: 福建农林大学, 2005: 2233. \[11\]Amtmann A, Hammond J P, Armengaud P, et al. Nutrient sensing and signalling in plants: Potassium and phosphorus. Adv Bot Res, 2006, 43: 209257. \[12\]Hammond J P, White P J. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot, 2008, 59: 93109. \[13\]Nilsson L, Miller R, Nielsen T. Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiol Plant, 2010, 139: 129143. \[14\]Yang X J, Finnegan P M. Regulation of phosphate starvation responses in higher plants. Ann Bot, 2010, 105: 513526. \[15\]Vance C P. Quantitative trait loci, epigenetics, sugars and microRNAs: Quaternaries in phosphate acquisition and use. Plant Physiol, 2010, 154: 582588. \[16\]Hammond J P, White P J. Sugar signalling in root responses to low phosphorus availability. Plant Physiol, 2011, 156: 10331040. \[17\]Cai J, Chen L, Qu H, et al. Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol Plant, 2011, 34:939946. \[18\]LópezBucio J, HernándezAbreu E, SánchezCalderón L, et al. An auxin transport independent pathway is involved in phosphate stressinduced root architectural alterations in Arabidopsis identification of BIG as a mediator of auxin pericycle cell activation. Plant Physiol, 2005, 137: 681691. \[19\]Nacry P, Canivenc G, Muller B, et al. A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol, 2005, 138: 20612074. \[20\]ClaudiaAnahí PérezTorres, José LópezBucio, Alfredo CruzRamírez, et al. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell, 2008, 20: 32583272. \[21\]Kuiper D, Schuit J, Kuiper P J C. Effects of internal and external cytokinin concentrations on root growth and shoot to root ratio of Plantago major ssp pleiosperma at different nutrient conditions. Plant Soil, 1988, 111: 231236. \[22\]Dharmasiri S, Swarup R, Mockaitis K, et al. AXR4 is required for localization of the auxin influx facilitator AUX1. Science, 2006, 312: 12181220. \[23\]Wu P, Wang J R, Hu H, et al. Expression of PIN genes in rice (Oryza sativa L.): Tissue specificity and regulation by hormones. Mol Plant, 2009, 2(4): 823831. |