\[1\]李霞, 戴传超, 焦德茂, 等. 光照条件下低温对水稻籼粳亚种幼苗抗氧化物质含量的影响. 植物生理与分子生物学学报, 2006, 32(3): 345353.\[2\]Liu F, Xu W, Wei Q, et al. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (japonica) and 9311 (indica) during oxidative stress. PLoS One, 2010, 5(1): e8632.\[3\]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571599.\[4\]Kuk Y I, Burgos N R, Hwang T E, et al. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci, 2003, 43(6): 2.\[5\]KatoNoguchi H. Low temperature acclimation mediated by ethanol production is essential for chilling tolerance in rice roots. Plant Signal Behav, 2008, 3(3): 202203.\[6\]Thomashow M F. Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol, 2010, 154(2): 571577.\[7\]Miura K J, Jin J B, Lee J Y, et al. SIZ1mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell, 2007, 19(4): 14031414.\[8\]Chinnusamy V, Ohta M, Kanrar S, et al. ICE1: A regulator of coldinduced transcriptome and freezing tolerance in Arabidopsis. Genes Dev, 2003, 17(8): 10431054.\[9\]Wang Y, Hua J. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance. Plant J, 2009, 60(2): 340349.\[10\]Kume S, Kobayashi F, Ishibashi M, et al. Differential and coordinated expression of Cbf and Cor/Lea genes during longterm cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst, 2005, 80(3): 185197.\[11\]Pennycooke J C, Cheng H, Stockinger E J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLDACCLIMATIONSPECIFIC genes. Plant Physiol, 2008, 146(3): 12421254.\[12\]Zhang X, Fowler S G, Cheng H, et al. Freezingsensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezingtolerant Arabidopsis. Plant J, 2004, 39(6): 905919.\[13\]Jaglo K R, Kleff S, Amundsen K L, et al. Components of the Arabidopsis Crepeat/dehydrationresponsive element binding factor coldresponse pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127(3): 910917.\[14\]Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought, highsalt and coldresponsive gene expression. Plant J, 2003, 33(4): 751763.\[15\]Morsy M R, Almutairi A M, Gibbons J, et al. The OsLti6 genes encoding lowmolecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene, 2005, 344: 171180.\[16\]Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67(6): 589602.\[17\]Tian Y, Zhang H, Pan X, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res, 2011, 20(4): 857866.\[18\]Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBFtype transcription factors involved in coldresponsive gene expression in transgenic rice. Plant&Cell Physiol, 2006, 47(1): 141153.\[19\]Sakuma Y, Liu Q, Dubouzet J G, et al. DNAbinding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and coldinducible gene expression. Biochem Biophys Res Commun, 2002, 290(3): 9981009.\[20\]Canella D, Gilmour S J, Kuhn L A, et al. DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochim Biophys Acta, 2010, 1799(5/6): 454462.\[21\]Novillo F, Alonso J M, Ecker J R, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 2004, 101(11): 39853990.\[22\]Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA, 2007, 104(52): 2100221007.\[23\]El Kayal W, Navarro M, Marque G, et al. Expression profile of CBFlike transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot, 2006, 57(10): 24552469.\[24\]Navarro M, Marque G, Ayax C, et al. Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot, 2009, 60(9): 27132724.\[25\]Mckhann H I, Gery C, Berard A, et al. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol, 2008, 8: 105.\[26\]Li Y, Bock A, Haseneyer G, et al. Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semicontrolled, and field phenotyping platforms. BMC Plant Biol, 2011, 11: 146.\[27\]Zhu J, Dong C H, Zhu J K. Interplay between coldresponsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol, 2007, 10(3): 290295.\[28\]Yun K Y, Park M R, Mohanty B, et al. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC Plant Biol, 2010, 10: 16.\[29\]Zhang L L, Zhao M G, Tian Q Y, et al. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing. Planta, 2011, 234(3): 445457. |