\[1\]Sakamoto T, Matsuoka M. Identifying and exploiting grain yield genes in rice.Curr Opin Plant Biol, 2008, 11(2): 20914.\[2\]White P T. Rice: The essential harvest.Natil Geogr, 1994, 185: 4879.\[3\]邓华凤. 中国杂交粳稻. 北京: 中国农业出版社, 2008.\[4\]Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95(5): 799808.\[5\]Brondani C, Rangel N, Brondani V, et al. QTL mapping and introgression of yieldrelated traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002, 104(67): 11921203.\[6\]Septiningsih E, Prasetiyono J, Lubis E, et al. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet, 2003, 107(8): 14191432.\[7\]Hittalmani S, Huang N, Courtois B, et al. Identification of QTL for growth and grain yieldrelated traits in rice across nine locations of Asia. Theor Appl Genet, 2003, 107(4): 679690.\[8\]International Rice Genome Sequencing Project. The mapbased sequence of the rice genome. Nature, 2005, 436(7052): 793800.\[9\]Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42(6): 541544.\[10\]Huang X, Qian Q, Liu Z, et al. Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4): 494497.\[11\]Yan W H, Wang P, Chen H X, et al. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4(2): 319330.\[12\]Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics.Genetics, 1995, 141(4): 16331639.\[13\]Guo L B, Xing Y Z, Mei H W, et al. Dissection of component QTL expression in yield formation in rice.Plant Breeding, 2005, 124(2): 127132.\[14\]Guo Y, Hong D L. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.). J Genet Genomics, 2010, 37(8): 533544.\[15\]Sleper D A, Poehlman J M. Breeding Field Crops. Ames: Blackwell Publishing, 2006.\[16\]Yang J, Zhu J, Williams R. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23(12): 15271536.\[17\]Wang D L, Zhu J, Li Z K, et al. Mapping QTLs with epistatic effects and QTL×environment interactions by mixed linear model approaches.Theor Appl Genet, 1999, 99(7): 12551264.\[18\]McCouch S. Gene Nomenclature System for Rice. Rice, 2008, 1(1): 7284.\[19\]Hittalmani S, Shashidhar H E, Bagali P, et al. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population.Euphytica, 2002, 125(2): 207214.\[20\]Jiang G, Xu C, Li X, et al. Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population.Acta Genet Sin, 2004, 31(1): 6372.\[21\]Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol, 2006, 170(1): 185193.\[22\]Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice ( Oryza sativa L.). Euphytica, 2000, 112(1): 6978.\[23\]Lanceras J C, Pantuwan G, Jongdee B, et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice.Plant Physiology, 2004, 135(1): 384399.\[24\]Suh J P, Ahn S N, Cho Y C, et al. Mapping of QTLs for yield traits using an advanced backcross population from a cross between Oryza sativa and O. glaberrima. Korean J Breed, 2005, 37(4): 214220.\[25\]Zhuang J, Fan Y, Rao Z, et al. Analysis on additive effects and additivebyadditive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet, 2002, 105(8): 11371145.\[26\]Xiao J, Li J, Yuan L, et al. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92(2): 230244.\[27\]Chen Y, Lübberstedt T. Molecular basis of trait correlations. Trends Plant Sci, 2010, 15(8): 454461.\[28\]Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761767.\[29\]Moncada P, Martinez C P, Borrero J, et al. Quantitative trait loci for yield and yield components in an Oryza sativa× Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001, 102(1): 4152.\[30\]Yu S, Li J, Xu C, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid.Proc Natl Acad Sci, 1997, 94(17): 92269231.\[31\]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics, 1989, 121(1): 185199.\[32\]Dubley J W. Epistatic Interactions in crosses of Illinois high oil × Illinois low oil and of Illinois high protein × Illinois low protein corn strains. Crop Sci, 2008, 48(1): 5968. |