\[1\]Tadege M, Dupuis I, Kuhlemeier C. Ethanolic fermentation: New functions for an old pathway. Trends Plant Sci, 1999, 4(8): 320325.\[2\]Kürsteiner O, Dupuis I, Kuhlemeier C. The pyruvate decarboxylase1 gene of Arabidopsis is required during anoxia but not other environmental stresses. Plant Physiol, 2003, 132(2): 968978.\[3\]Kimmerer T W, Kozlowski T T. Ethylene, ethane, acetaldehyde, and ethanol production by plant under stress. Plant Physiol, 1982, 69(4): 840847.\[4\]Tadege M, Bucher M, Sthli W, et al. Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant J, 1998, 16(6): 661671.\[5\]Bolton M D, Kolmer J A, Xu W W, et al. Lr34mediated leaf rust resistance in wheat: Transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. Mol Plant Microbe Interact, 2008, 21(12): 15151527.\[6\]Tajima S, Larue T A. Enzymes for acetaldehyde and ethanol formation in legume nodules. Plant Physiol, 1982, 70(2): 288392.\[7\]Ophir R, Pang X, Halaly T, et al. Geneexpression profiling of grape bud response to two alternative dormancyrelease stimuli expose possible links between impaired mitochondrial activity, hypoxia, ethyleneABA interplay and cell enlargement. Plant Mol Biol, 2009, 71(4/5): 403423.\[8\]Xu S B, Li T, Deng Z Y, et al. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol, 2008, 148(2): 908925.\[9\]Mellema S, Eichenberger W, Rawyler A, et al. The ethanolic fermentation pathway supports respiration and lipid biosynthesis in tobacco pollen. Plant J, 2002, 30(3): 329336.\[10\]Gass N, Glagotskaia T, Mellema S, et al. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in Petunia. Plant Cell, 2005, 17(8): 23552368.\[11\]Hossain M A, Huq E, Grover A, et al. Characterization of pyruvate decarboxylase genes from rice. Plant Mol Biol, 1996, 31(4): 761770. \[12\]Rivoal J, Thind S, Pradet A, et al. Differential induction of pyruvate decarboxylase subunits and transcripts in anoxic rice seedlings. Plant Physiol, 1997, 114(3): 10211029.\[13\]Huq E, Harrington S, Hossain M A, et al. Molecular characterization of pdc2 and mapping of three pdc genes from rice. Theor Appl Genet, 1999, 98(5): 815824.\[14\]Hossain M A, McCee J D, Crover A, et al. Nucleotide sequence of a rice genomic pyruvate decarboxylase gene that lacks introns: A pseudogene. Plant Physiol, 1994, 106(4): 16971698.\[15\]Li Y, Ohtsu K, Nemoto K, et al. The Rice Pyruvate decarboxylase 3 gene, which lacks introns, is transcribed in mature pollen. J Exp Bot, 2004, 55(394): 145146.\[16\]Setter T L, Ella E S. Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia: Ⅰ. Importance of treatment conditions and different tissues. Ann Bot, 1994, 74(3): 265271.\[17\]Setter T L, Ella E S, Valdez A P. Relationship between coleoptile elongation and alcoholic fermentation in rice exposed to anoxia: Ⅱ. Cultivar differences. Ann Bot, 1994, 74(3): 273279.\[18\]Setter T L, Ellis M, Laureles E V, et al. Physiology and genetics of submergence tolerance in rice. Ann Bot, 1997, 79(suppl 1): 6777.\[19\]Gibbs J, Morrell S, Valdez A, et al. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot, 2000, 51(345): 785797\[20\]Bucher M, Brander K A, Sbicego S, et al. Aerobic fermentation in tobacco pollen. Plant Mol Biol, 1995, 28(4): 739750.\[21\]Tadege M, Kuhlemeier C. Aerobic fermentation during tobacco pollen development. Plant Mol Biol, 1997, 35(3): 343354.\[22\]Laber B, Amrhein N. Metabolism of 1aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase. Biochem J, 1987, 248(2): 351358.\[23\]Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 1997, 25(24): 48764882.\[24\]Nicholas K B, Nicholas H B Jr, Deerfield D W II. GeneDoc: Analysis and visualization of genetic variation. EMBNEW News, 1997, 4: 14.\[25\]Jain M, Nijhawan A, Tyagi A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative realtime PCR. Biochem Biophys Res Commun, 2006, 345(2): 646651.\[26\]Pfaffl M W. A new mathematical model for relative quantification in realtime RTPCR. Nucl Acids Res, 2001, 29(9): e45. \[27\]Hiei Y, Otha S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the TDNA. Plant J, 1994, 6(2): 271282. \[28\]Lu Y, Wu R Y, Han B. Anaerobic induction of isocitratelyase and malate synthase in submerged rice seedlings indicates the important metabolic role of the glyoxylate cycle. Acta Biochim Biophys Sin, 2005, 37(6): 406414.\[29\]Dai S, Chen T, Chong K, et al. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteom, 2007, 6(2): 207230.\[30\]LasanthiKudahettige R, Magneschi L, Loreti E, et al. Transcript profiling of the anoxic rice coleoptile. Plant Physiol, 2007, 144(1): 218231.\[31\]Quimio C A, Torrizo L B, Setter T L, et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J Plant Physiol, 2000, 156(4): 516521.\[32\]Rahman M, Grover A, Peacock W J, et al. Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust J Plant Physiol, 2001, 28(12): 12311241.\[33\]Zabalza A, van Dongen J T, Froehlich A, et al. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol, 2009, 149(2): 10871098. |