[1]王镜岩, 朱圣庚, 徐长法. 生物化学. 北京: 高等教育出版社, 2002: 129-144.
[2]Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deepwater rice(Oryza sativa L.). Ann Bot, 2003, 91: 301-309.
[3]Matthieu N B, Fanny T, Martine L F, et al. Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): A microcosm study. Plant & Soil, 2008, 312(1/2):207-218.
[4]章秀福, 王丹英, 屈衍艳, 等. 水稻垄畦栽培的植株形态和生理特性研究. 作物学报, 2005, 31(6): 742-748.
[5]章秀福, 王丹英, 邵国胜. 垄畦栽培水稻的产量、品质效应及其生理生态基础. 中国水稻科学, 2003, 17(4): 343-348.
[6]王丹英, 韩勃, 章秀福, 等. 水稻根际含氧量对根系生长的影响. 作物学报, 2008, 34(5): 803-80.
[7]Shigeru M G. Agriculture Encyclopedia: Root Formation. Japan:Yangxian Hall, 1987.
[8]Ponnampernma F N. The chemistry of submerged soils. Advan Agron, 1972, 24: 29-96.
[9]Colmer T D, Cox C H, Voesenek L A. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations. New Phytol, 2006, 170: 767-778.
[10]Colmer T D. Longdistance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ, 2003, 26: 17-36.
[11]Garthwaite A J, Armstrong W, Colmer T D. Physiology of the barrier to radial O2 loss in adventitious roots of Hordeum marinum assessed using modelling and experiments to manipulate O2 in the aerenchyma//Abstract of 8th Congress of International Society of Plant Anaerobiosis. Perth, Australia: Interational Society of Plant Anaerobiosis, 2004: 27-31.
[12]Groot T T, Bodegom P M, Meijer H A, Harren F J. Gas transport through the root shoot transition zone of rice tillers. Plant & Soil, 2005, 277: 107-116.
[13]Armstrong J, Armstrong W. Rice: Sulphideinduced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Ann Bot, 2005, 96: 625-638.
[14]Claus L M, Kaj S J. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna. New Phytol, 2008, 179: 804-825.
[15]Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol, 2003, 159: 185-194.
[16]汪晓丽, 司江英, 陈冬梅, 等. 低pH条件下不同氮源对水稻根通气组织形成的影响. 扬州大学学报: 农业与生命科学版, 2005, 26(2): 66-71.
[17]Amara W, Hank G, Campbell J T. The use of agar nutrient solution to simulate lack of convection in waterlogged soils. Ann Bot, 1996, 80: 115-123.
[18]Zhang Y S, Lin X Y, Luo A C . Chemical behavior of phosphorus in paddy soil as affected by O2 secretion from rice root. Chin J Rice Sci, 2000, 14(4): 208-212 .
[19]Frankenberger W T. Factors affecting the fate of urea peroxide added to soil. Bull Environ Contam Toxicol, 1997, 59: 50-57.
[20]Crawford R M M. Tolerance to anoxia and ethanol metabolism in germinating seeds. New Phytol, 1977, 79: 511-517.
[21]Webb T, Armstrong W. The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots。 J Exp Bot, 1983, 34: 579-603.
[22]Vartapetian B B. Plant anaerobic stress as a novel trend in ecological physiology, biochemistry and molecular biology:2. Further development of the problem. Russ J Plant Physiol, 2007, 53(6): 711-738.
[23]Perata P, Alpi A. Plant responses to anaerobiosis. Plant Sci, 1993, 93: 1-17.
[24]Maslova I P, Chernyadeva I F, Vartapetian B B. Soluble proteins and alcohol dehydrogenase of rice seedlings in anoxia//Abstracts of Ⅻ International Botanical Congress. Vol. 2. Leningrad: Nauka, 1975: 365.
[25]Costes C, Vartapetian B B. Plant grown in a vacuum: The ultrastructure and functions of mitochondria. Plant & Sci, 1978, 11: 115-119.
[26]Jacob D L, Otte M L. Longterm effects of submergence and wetland vegetation on metals in a 90year old abandoned PbZn mine tailings pond. Environ Pollut, 2004, 130: 337-345.
[27]Maria S, Kapuganti J G, Robert D H. Nitritedriven anaerobic ATP synthesis in barley and rice root mitochondria. Planta, 2007, 226: 465-474.
[28]Angenlida M, Gerd A. Tolerance of crop plants to oxygen deficiency stress: Fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant, 2003, 117: 508 -520.
[29]Xu K, Xu X, Ronald P C, et al. A highresolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol Gen Genet, 2000, 263: 681-689.
[30]Nandi S, Subudhi P K. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selection gene typing. Mol Gen Genet, 1997, 225: 1-8.
[31]Nakazomo M, Tsuji H, Li Y, et al. Expression of a gene encoding mitochondria aldehyde dehydrogenases in rice increase under submerged conditions. Plant Physiol, 2000, 16(1):45-51.
[32]龚红兵, 周义文, 刁立平, 等. 几个杂交稻组合的适应性分析. 江苏农业科学, 2006(6): 25-28.
[33]Haque Q A, Lambers D H R, Tepora N M. Inheritance of submergence tolerance in rice. Euphytica, 1989, 41(3): 247-251.
[34]Revsbech N P, Pedersen O W, Reichardt A. Briones microsensor analysis of oxygen and pH in the rice rhizosphere under field and laboratory conditions. Biol Fert Soils, 1999, 29: 379-385.
[35]Liesack W, Schnell S, Revsbech N P. Microbiology of flooded rice paddies. FEMS Microbiol Rev, 2000, 24: 625-645.
[36]Weis J S, Weis P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ Int, 2004, 30: 685-700.
[37]Armstrong J, Armstrong W. Rice and Phragmites: Effects of organic acids on growth, root permeability, and radial oxygen loss to the rhizosphere. Am J Bot, 2001, 88(8): 1359-1370.
[38]Pan S Z. Characterization of gleyization of paddy soils in the middle reaches of the Yangtze River. Pedosphere, 1996, 6(2):111-119.
[39]Jia Z J, Cai Z C, Xu H. Effect of rice plants on CH4 production, transport, oxidation and emission in rice paddy soil. Plant & Soil, 2001, 23(1): 211-221.
[40]何胜德, 林贤青, 朱德峰. 杂交水稻根际供氧对土壤氧化还原电位和产量的影响. 杂交水稻, 2006, 21(3): 78-80.
[41]Lu Y H, Dirk R, Werner L. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol, 2006, 8(8): 1351-1360.
[42]Banker B C, Kludze H K, Alford D P. Methane sources and sinks in paddy rice soils: Relationship to emissions. Agric EcOsyst Environ, 1995, 53: 243-251.
[43]李香兰, 徐华, 曹金留, 等. 水分管理对水稻生长期CH4排放的影响. 土壤, 2007, 39(2): 238-240.
[44]Butterbach B K, Papen H, Rermenberg H. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ, 1997, 20: 1175-1183.
[45]King G M. Ecological aspects of methan oxidation, a key determinant of global methane dynamics. Adv Microb Ecol, 1992, 12: 431-468.
[46]丁维新, 蔡祖聪. 植物在CH4产生、氧化和排放中的作用. 应用生态学报. 2003, 14(8): 1379-1384.
[47]傅志强, 黄璜, 何保良, 等. 水稻植株通气系统与稻田CH4排放相关性研究. 作物学报, 2007, 33(9): 1458-1467.
[48]Arah J R M, Kirk G J D. Modelling rice plantmediated methane emission. Nutr Cycl AgroEcosys, 2000, 58(13): 221230.
[49]陈永华, 赵 森, 柳 俊, 等. 水稻耐淹涝性状的遗传分析和SSR标记的研究, 遗传, 2006, 28(12): 15621566.
[50]陈永华, 赵森, 柳俊, 等. 利用差异显示法研究水稻耐淹涝相关基因. 农业生物技术学报, 2006, 14(6): 894-898.
[51]李阳生, 李玉昌, 周建林, 等. 水稻新材料耐淹涝能力的比较研究. 应用与环境生物学报, 2000, 6(3): 211-217.
[52]唐建军, 王永锐, 傅家瑞. 水稻对渍水稻田土壤缺氧胁迫的反应. 中国稻米, 1995(1): 29-31.
[53]张祖德. 水稻垄畦半旱式栽培的增产原因和技术. 中国稻米, 1999(2): 15-17. [54]Baker A M, Hatton W. Calcium peroxide as a seed coating material for padi rice: Ⅲ. Glasshouse trials. Plant & Soil, 1987, 99: 379-386. |