[1]杜新法, 陶荣祥, 孙漱沅, 等. 浙江省梨孢属(Pyricularia Sacc.)真菌的寄主植物.植物病理学报, 1995, 25(4): 337.
[2]杜新法, 孙漱沅, 郑重, 等. 稻梨孢菌与其他寄主梨孢菌在水稻植株上的交互作用.植物保护学报, 1996, 23(2): 97-101.
[3]Maeda K, Houjyou Y, Komatsu T, et al. AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. Mol Plant-Microb Interact, 2009, 22(11): 1331-1340.
[4]Maeda K, Houjyou Y, Komatsu T, et al. Nonhost resistance to Magnaporthe oryzae in Arabidopsis thaliana. Plant Signal Behav, 2010, 5(6): 755-756.
[5]Park J Y, Jin J M, Lee Y W, et al. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiol, 2009, 149(1): 474-486.
[6]Igarashi S, Utiamada C M, Igarashi L C, et al. Pyricularia in wheat: 1. Occurrence of Pyricularia sp. in Parana State. Fitopatol Bras, 1986, 11: 351-352. (in Portuguese)
[7]Ekwamu A. Influence of head blast infection on seed germination and yield components of finger millet (Eleusine coracana L. Gaertn). Trop Pest Manag, 1991, 37(2): 122-123.
[8]Kellogg E A. Evolutionary history of the grasses. Plant Physiol, 2001, 125(3): 1198-1205.
[9]Jerrold I D, Robert J S. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Am J Bot, 1993, 80(12): 1444-1445.
[10]Caetano-Anolles G. Evolution of genome size in the grasses. Crop Sci, 2005, 45(5): 1809-1816.
[11]陈军营, 李香妞, 赵一丹, 等. 新型禾本科模式植物: 二穗短柄草.植物生理学通讯, 2008, 44(4): 781-784.
[12]Shi Y, Draper J, Stace C. Ribosomal DNA variation and its phylogenetic implications in the genus Brachypodium (Poaceae). Plant Syst Evol, 1993, 188(3-4): 125-138.
[13]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463(7282): 763-768.
[14]王宏归, 王保莉, 林辰涛, 等. 二穗短柄草Bd21的形态学观察.西北农业学报, 2007, 16(6): 296-300.
[15]李平, 朱伟然, 严学兵, 等. 新的禾本科模式植物: 二穗短柄草.草原与草坪, 2008, 131(6): 69-131.
[16]Alves S C, Worland B, Thole V, et al.A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc, 2009, 4(5): 638-649.
[17]Draper J, Mur L A J, Jenkins G, et al. Brachypodium distachyon, a new model system for functional genomics in grasses. Plant Physiol, 2001, 127(4): 1539-1555.
[18]Parker D, Beckmann M, Enot D P, et al. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host pathogen interactions. Nat Protoc, 2008, 3(3): 435-445.
[19]Mitchel T K, Dean R A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell, 1995, 7(11): 1868-1878.
[20]Choi W, Dean R A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and others aspects of growth and development. Plant Cell, 1997, 9(11): 1973-1983.
[21]Talbot N J, Ebbole D J, Hamer J E, et al. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5(11): 1575-1590.
[22]Xu J R, Hamer J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev, 1996, 10(21): 2696-2706.
[23]Routledge A P M, Shelley G, Smith J V, et al. Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Mol Plant Pathol, 2004, 5(4): 253-265.
[24]Allwood J W, Ellis D I, Heald J K, et al. Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatorynon-polarmetabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J, 2006, 46(3): 351-368.
[25] Parker D, Beckmann M, Zubair H, et al. Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J, 2009, 59(5): 723-737.
[26]朱作言. 模式生物研究.生命科学研究, 2006, 18(5): 419. |