[1]袁隆平. 杂交水稻超高产育种. 杂交水稻, 1997, 12(6): 1-6.
[2]朱德峰, 林贤青, 曹卫星. 不同叶片卷曲度杂交水稻的光合特性比较. 作物学报, 2001, 27(3): 329-333.
[3]朱雄涛, 汪真. 水稻高光效生理育种初探. 福建稻麦科技, 2003(6): 14-17.
[4]Scanlon M J. Developmental complexities of simple leaves. Curr Opin Plant Biol, 2000, 3(1): 31-36.
[5]Bowman J, Eshed Y, Baum S F. Establishment of polarity in angiosperm lateral organs. Trends Genet, 2002, 18(3): 134-141.
[6]Laux T, Mayer K F, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, 122(1): 87-96.
[7]Schoof H, Lenhard M, Haecker A, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100(6): 635-644.
[8]Fletcher J C, Brand U, Running M P, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999, 283(5409): 1911-1914.
[9]Lincoln C, Long J, Yamaguchi J, et al. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell, 1994, 6(12): 1859-1876.
[10]Ito Y, Eiguchi M, Kurata N. KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice. Genesis, 2001, 30(4): 231-238.
[11]Sato Y, Hong S K, Tagiri A, et al. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl Acad Sci USA, 1996, 93(15): 8117-8122.
[12]Scofield S, Murray J A. KNOX gene function in plant stem cell niches. Plant Mol Biol, 2006, 60(6): 929-946.
[13]Byrne M E, Barley R, Curtis M, et al. Asymmetric leaves 1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408(6815): 967-971.
[14]Ori N, Eshed Y, Chuck C R, et al. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development, 2000, 127(24): 5523-5532.
[15]Semiarti E, Ueno Y, Tsukaya H, et al. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem related homeobox genes in leaves. Development, 2001, 128(10): 1771-1783.
[16]Endrizzi K, Moussian B, Haecker A, et al. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10(6): 967-979.
[17]Zhong R, Ye Z H. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell, 1999, 11(11): 2139-2152.
[18]Ratcliffe O J, Riechmann J L, Zhang J Z. INTERFASCICULAR FIBERLESSI is the same gene as REVOLUTA. Plant Cell, 2000, 129(3): 315-317.
[19]McConnell J R, Emery J, Eshed Y, et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411(6838): 709-713.
[20]Siegfried K R, Eshed Y, Baum S F, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126(18): 4117-4128.
[21]Kumaran M K, Bowman J L, Sundaresan V. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell, 2002, 14(11): 2761-2770.
[22]Yamaguchi T, Nagasawa N, Kawasaki S, et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16(2): 500-509.
[23]Eshed Y, Baum S F, Perea J V, et al. Establishment of polarity in lateral organs of plants. Curr Biol, 2001, 11(16): 1251-1260.
[24]Emery J F, Floyd S K, Alvarez J, et al. Radial patterning of Arabidopsis shoots by class ⅢHD-ZIP and KANADⅠgenes. Curr Biol, 2003, 13(20): 1768-1774.
[25]Kerstetter R A, Bollman K, Taylor R A, et al. KANADⅠ regulates organ polarity in Arabidopsis. Nature, 2001, 411(6838): 706-709.
[26]Vogler H, Kuhlemeier C. Simple hormones but complex signaling. Curr Opin Plant Biol, 2003, 6(1): 51-56.
[27]Okadala K, Uedal J, Komaki M K, et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991, 3(7): 677-684.
[28]Reinhardt D, Pesce E R, Stieger P, et al. Regulation of phyllotaxis by polar auxin transport. Nature, 2003, 426(6964): 255-260.
[29]Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets. Cell, 2002, 110(4): 513-520.
[30]Juarez M T, Kui J S, Thomas J, et al. MicroRNA-mediated repression of rolled leaf1 specifies maize polarity. Nature, 2004, 428(6978): 84-88.
[31] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8(19): 4321-4325.
[32]Vollbrecht E, Veit B, Sinha N, et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature, 1991, 350(6315): 241-243.
[33]Smith L G, Greene B, Veit B, et al. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 116(1): 21-30.
[34]Kano-Murakami Y, Yanai T, Tagiri A, et al. A rice homeotic gene, OSH1, causes unusual phenotypes in transgenic tobacco. FEBS Lett, 1993, 334(3): 365-368.
[35]Sinha N R, Williams R E, Hake S. Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev, 1993, 7(5): 787-795.
[36]Postma-Haarsma A D, Verwoert I I, Stronk O P, et al. Characterization of the KNOX class homeobox genes Oskn2 and Oskn3 identified in a collection of cDNA libraries covering the early stages of rice embryogenesis. Plant Mol Biol, 1999, 39(2): 257-271.
[37]Hareven D, Gutfinger T, Parnis A, et al. The making of a compound leaf: Genetic manipulation of leaf architecture in tomato. Cell, 1996, 84(5): 735-744.
[38]Ma Y, Wang F, Guo J, et al. Rice OsAS2 gene, a member of LOB domain family, functions in the regulation of shoot differentiation and leaf development. J Plant Biol, 2009, 52(5): 374-381.
[39]Dai M, Hu Y, Zhao Y, et al. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol, 2007, 144(1): 380-390.
[40]Hu J, Zhu L, Zeng D, et al. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010, 73(3): 283-292.
[41]Fujino K, Matsuda Y, Ozawa K, et al. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279(5): 499-507.
[42]Qi J, Qian Q, Bu Q, et al. Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol, 2008, 147(4): 1947-1459.
[43]Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437(7059): 693-698.
[44]Zhang G H, Xu Q, Zhu X D, et al. SHALLOT-LIKE1 is a KANADⅠ transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell, 2009, 21(3): 719-735.
[45]Zhao S Q, Hu J, Guo L B, et al. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res, 2010, 20(8): 935-947.
[46]Yamamuro C, Ihara Y, Wu X, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12(9): 1591-1606.
[47]Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17(3): 776-790.
[48] Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15(12): 2900-2910.
[49]Nagasawa N, Miyoshi M, Sano Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130(4): 705-718.
[50] 汪得凯, 张红心, 胡国成, 等. 一个水稻大叶角度突变体lla的遗传分析及基因克隆. 科学通报, 2005, 50(4): 399-401.
[51]Li W, Wu J, Weng S, et al. Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L. ). Plant Cell Rep, 2010, 29(6): 617-627.
[52]Kurata N, Miyoshi K, Nonomura K, et al. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol, 2005, 46(1): 48-62.
[53]Lee J, Park J J, Kim S L, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule and laminar joint. Plant Mol Biol, 2007, 65(4): 487-499.
[54]Nagasaki H, Itoh J, Hayashi K, et al. The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA, 2007, 104(37): 14867-14871. |